Optimal Weed Control in Citrus

- Latest on Chemical Strategies and Non-chemical Alternatives

Ramdas Kanissery

Assistant Professor - Weed Scientist

Southwest Florida Research and Education Center Immokalee, FL

Horticultural Sciences

Talk outline: Optimal Weed Control in Citrus – Updates on

Chemical strategies

- Effective herbicide use
- Tree-safe herbicide use
- **Non-chemical alternatives**
 - **Cover-cropping**

Talk outline: Optimal Weed Control in Citrus – Updates on

Chemical strategies

Effective herbicide use

Tree-safe herbicide use

Non-chemical alternatives

Cover-cropping

POST-emergence: What to Mix and What Not to Mix!

Glyphosate + 2,4-D (Embed Extra®)

clogged sprayer filter

Mixing issues - Dilution is the solution!

- Increase water application volumes (e.g., 20+ GPA)
- Only add glyphosate when the spray tank is full

POST-emergents: What to Mix and What Not to Mix!

Glyphosate + 2,4-D (Embed Extra®)

Survival of <u>grass seedlings</u> to glyphosate + 2,4-D mixture (right)

e.g., Johnson grass, Guinea grass, Barnyard grass etc.

POST-emergents: What to Mix and What Not to Mix!

These POST- herbicide mixes <u>will NOT</u> have favorable outcomes

Fluazifop-butyl (Fusilade) + 2,4-D (Embed Extra®)

Glyphosate + Carfentrazone (Aim)

Slyphosate + Glufosinate (Scout, Rely 280 etc.)

Improving herbicide application outcomes

Use optimum rates

Use high labeled rates

- Heavy weed infestation
- Weeds in mature growth stage

Effect of paraquat application rates on goatweed control

Strategies for getting the best out of POST-emergents *—tips for improving efficacy*

Use an appropriate surfactant

- Helps improve the herbicide retention, coverage and efficacy

Saflufenacil (Treevix) + NIS

Saflufenacil (Treevix) + Methylated seed oil (MSO)

UV light showing <u>herbicide</u> <u>spray- retention</u> on cabbage leafsurface when surfactant was used

Strategies for getting the best out of POST-emergents *—tips for improving efficacy*

The <u>half-life</u> of selected herbicides at different solution pH values

Use suggested adjuvants

- AMS, Buffers, etc.
- Most herbicides work best when the pH of mixing water is 4-6

(Read specific product labels for requirement)

Herbicide a.i	рН 5	рН 6	рН 7	рН 8	рН 9
Sethoxydim	Stable	Stable	Stable	Stable	Stable
Paraquat	Stable	Stable	Stable	Unstable	Unstable
2,4-D	Stable	Stable	Stable	Unstable	Unstable
Glyphosate	Stable	Stable	Unstable	Unstable	Unstable

When to spray herbicides? – dawn, noon or dusk

Apply when there **is ample sunlight**

- Mid-day applications enhance effectiveness of

Glufosinate

 Broad-leaf weeds tended to be more sensitive to the time-of-day effect than grasses

Source& credits: Takano et al. 2019 ; Martinson et al.2005

Spraying during rainy season – give at least 6 hrs. dry period

E.g., of Rainfast ratings for citrus herbicides

Rainfast periods of burndown herbicides

- Time required <u>between</u> <u>application and rain</u> for the product to perform effectively
- Generally, rainfall within 6 hrs. after application may reduce effectiveness

Herbicide products	Hours until rainfast
Aim	1
Gramoxone SL	0.5
Roundup PowerMax	0.5
Roundup WeatherMax	0.5
Scout	4
Embed extra	6+
Poast	1
Fusilade DX	1
Treevix	1

Source: Product Labels

Spraying during summer- apply during the cooler part of the day

Efficacy of these POST-emergent systemic herbicides reduces when temperatures are <u>above 95°F</u>

- Glyphosate
- 2,4-D Embed Extra
- Sethoxydim Poast

Injury potential to tree is also high

POST-emergent herbicide application

Suppressing weed germination – prevention is better than cure

Do bring in PRE-emergent herbicides into the program

- A square foot of soil, 6 inches deep, can have ~3000 viable weed seeds
- ~130 million viable seeds per acre

Major PRE-emergence herbicides used in FL citrus

- See 'Florida Citrus Production Guide: Weed Chapter' for a complete listing of herbicides used in citrus

- Consult specific product label for rate suggestion and other usage restrictions

Major PRE-emergence herbicides used in FL citrus

- See 'Florida Citrus Production Guide: Weed Chapter' for a complete listing of herbicides used in citrus

- Consult specific product label for rate suggestion and other usage restrictions

Tank mixing pre-emergence/residual herbicides helps cut-down the rates and manages herbicide tolerance issues

Active Herbicide **Product Rate** ingredient(s) product(s) (per acre) Flumioxazin + Chateau + 6 oz Indaziflam Alion 3 oz Flumioxazin + Chateau + 6 oz Diuron 4 lb Karmex Flumioxazin + Chateau + 8 oz Norflurazon 3 lbs. Solicam Rimsulfuron + Pruvin or Matrix + 2 oz Indaziflam 3.5 oz Alion

Evaluated PRE tank mixes

Challenges with Florida soils

Typical Crop production soils

Florida Citrus production soils

Sand <u>>95%</u> Organic matter <u><1</u>%

Basically, beach sand !

PRE-emergence herbicide retention in soil – important for weed suppression Her-**PRE-Herbicide** Her Her Her+ Fe³⁺ Her Her+ **FL Soils** Her-Soils Her Sand OM (Charged) Less Charge Her-Her Herbicide needs to bind to soil to stay in the weed Her germination zone Her (within top ~4 inches)

How can we improve the herbicide retention in sandy soils?

<u>Utilizing adjuvants</u> for improving the efficacy of **PRE-emergence** herbicides

- Herbicide deposition agent to improve soil retention of herbicides
- E.g., Polyvinyl polymers
- E.g trade names Hydrovant fA[©], Grounded[©] etc.
- Tank-mixed with PRE-emergence herbicides

<u>Deposition agents</u> increase the herbicide spray droplet size and restricts their movement through the soil pore spaces

How can we improve the herbicide retention in sandy soils?

Utilizing adjuvants for improving the efficacy of PRE-emergence herbicides

- Herbicide deposition agent to improve soil retention of herbicides
- E.g., Polyvinyl polymers
- E.g trade names Hydrovant fA[©], Grounded[©] etc.
- Tank-mixed with PRE-emergence herbicides

Herbicide solution labeled with dye + Deposition agent

Herbicide solution labeled with dye

<u>Deposition agents</u> increase the herbicide spray droplet size and restricts their movement through the soil pore spaces

Utilizing adjuvants for improving the efficacy of PRE-emergence herbicides

- Herbicide deposition agent or adsorption agent
- E.g., Polyvinyl polymers
- E.g trade name Hydrovant fA[©]
- Tank-mixed with PREemergence herbicide
 Flumioxazin (Chateau)

- Replication (n) = 4
- Mean comparison: Tukey's HSD ($\alpha = 0.05$)
- * Significant difference ($p \le 0.05$)

Utilizing adjuvants for improving the efficacy of PRE-emergence herbicides

- Herbicide deposition agent or adsorption agent
- E.g trade name,. Hydrovant fA©

 Tank-mixed with PREemergence herbicide
 Flumioxazin (Chateau)

Chateau 8 oz/acre + Hydrovant fA 0.1% v/v

- Replication (n) = 4
- Mean comparison: Tukey's HSD ($\alpha = 0.05$)
- * Significant difference ($p \le 0.05$)

Utilizing adjuvants for improving the efficacy of PRE-emergence herbicides

Flumioxazin + adjuvant ~3 months

Untreated control ~3 months

POST-emergence: Herbicide tolerance issues reported..

Parthenium weed..

POST-emergence: Herbicide tolerance issues reported..

Parthenium weed

- Ragweed parthenium, white-top etc.
- 25,000 seeds/plant
- Tolerance / poor efficacy with
 Glyphosate products
 Glufosinate

Management strategies

- Saflufenacil (Treevix)
- 2,4-D (Embed extra; 24c label) + Glyphosate
- Effective pre-emergence herbicides

Pendimethalin (Prowl) Flumioxazin (Chateau) Indaziflam (Alion)

POST-emergence: Herbicide tolerance issues reported..

Spanish needles

- 3,000-6,000 highly viable seeds per plant
- Emerges throughout year
- Tolerance / poor efficacy with
 Glyphosate
 Saflufenacil (Treevix)

Management strategies

- Rotate with 2,4-D (Embed extra) + Glyphosate
- Follow-up sprays
- Use a pre-emergence herbicide (e.g., Flumioxazin, Indaziflam etc.)

Herbicide tolerance issues Spray when they are young – never let weeds to grow and adapt!

Parthenium – young growth stage

Spanish needles – young plant

Common sedge weeds in citrus

Spray when they are young – never let weeds to grow and adapt!

Nutsedge is more susceptible to herbicides when they are young and has not started producing tubers

Talk outline: Optimal Weed Control in Citrus – Updates on

Chemical strategies

Effective herbicide use

Tree-safe herbicide use

Non-chemical alternatives

Cover cropping

Lateral travel distance herbicide spray droplets travel

Smaller spray droplets can travel up to 1000 feet

<u>Spray deposition agents</u> reduce the possibility of upward spray drift

Glyphosate – Phosphorus interactions in citrus production

Adsorption/Binding of <u>glyphosate</u> in different citrus soils

	High K _{ads} = High adsorption to soil				
Location	K _{ads}	1/n _{ads}	R ²		
Southwest	14.28 (±0.83) ¶ B	0.41 (±0.01)	0.98		
Southeast	16.56 (±0.17) B	0.27 (±0.01)	0.91		
Central	30.88 (±0.82) A	0.43 (±0.04)	0.98		

K_{ads} Freundlich adsorption coefficient.

- 1/n_{ads} Adsorption isotherm slope
- R² Goodness of fit for Freundlich model.
- ± Standard error
- ¶ Letters beside the numeric values indicate Tukey's HSD group at α =0.05. Values with same letters are not significantly different

Adsorption/Binding of <u>glyphosate</u> in different citrus soils

	High K _{ads}	High K _{ads} = High adsorption to soil				
Location	K _{ads}	1/n _{ads}	R ²			
Southwest	14.28 (±0.83) ¶ B	0.41 (±0.01)	0.98			
Southeast	16.56 (±0.17) B	0.27 (±0.01)	0.91			
Central	30.88 (±0.82) A	0.43 (±0.04)	0.98			
K _{ads} Freundlich adsorption of 1/n _{ads} Adsorption isotherm	coefficient. slope	Adsorption rela	tively fred soil			

- R² Goodness of fit for Freundlich model.
- ± Standard error
- ¶ Letters beside the numeric values indicate Tukey's HSD group at α =0.05. Values with same letters are not significantly different

Source: Gairhe et al., 2021, Frontiers in Environmental Chemistry

Properties of FL citrus production soils

- Not all sandy soils are identical !

Properties	Southwest Florida (Immokalee)	Southeast Florida (Ft. Pierce)	Central Florida (Lake Alfred)		
Soil type	Sandy	Sandy	Sandy		
% Silt + Clay	7.2	5.2	10		
Phosphorus (lbs./acre)	68	63	260		
Soil pH	6.1	6.0	5.9		
% Organic matter	0.73	0.44	0.59		
Cation exchange capacity (meq/100g)	5	2.8	4		

Higher Silt + Clay% and Phosphorus in Central FL

Glyphosate's adsorption mechanism to soil

<u>Glyphosate – Phosphorus interactions in</u> citrus production

Source: Fenn et al. 2023 Journal of Plant Nutrition

Impacts of glyphosate on citrus nutrition

Impacts of glyphosate on citrus nutrition

Number of observations: 20 Error bars: ±SD Fruit detachment force (FDF) kg F 10.0 2 WAT Crop-safety of glyphosate – in Florida 8.0 Citrus R = -0.796.0 4.0 2.0 Fruit detachment Force (FDF) 0.0 0.0 1.0 2.0 3.0 4.0 5.0 Fruit detachment force (FDF) kg F 10.0 4 WAT 8.0 R = -0.566.0 4.0 2.0 0.0 2.0 0.0 1.0 3.0 4.0 5.0 Fruit detachment force (FDF) kg F 10.0 6 WAT Avoiding glyphosate sprays 8.0 = -0.396.0 close to harvesting timeline in 4.0 'Valencia citrus' may be 2.0 beneficial in improving the yield 0.0 0.0 1.0 2.0 3.0 4.0 5.0 safety Glyphosate rate

kg a.e ha-1

Do rotate POST-emergent herbicides

Tested pre-emergence herbicide programs did not significantly affect <u>HLB disease severity</u>

Tested pre-emergence herbicide programs did not significantly affected the roots

Observation period of ~3-months

Hamlin orange

 No significant differences between the treatment means

Valencia orange

Treatments

Number of reps: 4

Tukey's HSD (α 0.05)

Error bars: ±SD

Talk outline: Optimal Weed Control in Citrus – Updates on

Chemical strategies

Effective herbicide use

Tree-safe herbicide use

Non-chemical alternatives

Cover cropping

"Weeds in the row-middles are a major source of weed infestation into the tree rows"

Use of **cover crops** in citrus production

Cover crops

- Plants primarily grown for enriching the soil, and for other benefits
- Non-cash crops
- Emerging practice in citrus production in FL

Cove crop mix planted in citrus row middles

Weed suppression consistently observed in multi-year multilocation studies

LG+ NL =Legume + Non-legume

NL = Non-legume

- Based on observations from a two-year in two locations
- Error bars represent the standard error of the mean
- Mean separation by LSD (P<0.05)

Higher the cover crop density, better the weed suppression in row middles

Weed density and cover crop density were <u>negatively correlated</u> in treated row-middles

- Based on the average of observations from a two-year study in two locations
- Error bars represent standard error of mean

Cover copping may also contribute to longer term weed management in row-middles

- Due to potential reduction in the 'weed seed addition' to the soil
- Weed seed bank depletion

Use of cover crops as a weed control strategy in citrus

Planting cover crops in the row-middles effectively reduced grass infestation in the **tree rows**

Weed control in tree rows

Data shown from Guinea grass (Megathyrsus maximus)

Guinea grass growing in citrus tree rows

Summary

Effective herbicide use

- POST sprays (optimizing outcomes)
- PRE herbicides for preventing germination from the soil seed bank
- Tank mixing PREs
- Soil binding agents for PRE
- Managing herbicide tolerance issues

Tree-safe herbicide use

- Herbicide application best practices
- Impact of glyphosate on tree nutrition
- Avoid glyphosate spays near harvest

Cover-cropping in citrus

- Row middle vegetation management
- Be patient!

Citrus weed control – *How is it different?*

The focus of a citrus weed management program is the *tree*, not the weeds!

Critical weed free period for citrus

In Florida citrus most critical impact of the weed competition occurs roughly during bloom periods to early fruit set

Acknowledgements

Biwek Gairhe

Nirmal Timilsina

My lab group

From Left: Nirmal Timilsina, Robert Riefer, Ruby Tiwari, Shea Teems, Ramdas Kanissery, Diderot Saintilma *Inset*: Mahesh Bashyal, Miurel Brewer *Not in picture:* Rebecca McGill

Thank you...

Acknowledgements

- Collaborators
- Growers
- Cooperators

United States Department of Agriculture National Institute of Food and Agriculture

P	oste	Produc	erg	enc	e He	Reference Guide to Provide to Guide and their effects on weed in Florida Citrus Production Guide and their effects on weed in	R. Ki S. H. Continanagement	Futch, B. A	E. McAvoy, . Sellers, and	I. D. Burr 1 S. S. Tee	
Herbicide ^a	Herbicide ^a MOA ^b REI ^c PHI ^d Wi Hours Dav(s)		Weeds	Controlled	Comments	Suggested Rate per Acre					
				Grasses	Broadleaf						
Cigglineate -Undetme	d Bi	1	K		*	Avoid snot act with citrur fruit, hidags, and grown back. Ranfall within 1-6 beam after appreciation may reduce after some	r with citrue fruit, Politique and green hark. 7-5 hairs after appreciation may reduce affacturements. Personal sense 13-3/25 BA AS Sarp retuct abol for arrange measurement				
Cyphocate Unterical moving	G	Same .	8.	*	×	Do NOT once within 5 years before or after tecament.	Bahagran t 0.125 (b A.S. followed by Ind application of a Betweetington: 0.125-0.27 (b A.E.			non Albaraya	
Clyphosate -Wipeg	C.	Alarm	4.	8	*	Use wipers to service tail growing and affind music.	59-30% solution -carpit wper 50%-100% unlinkon - panel wper				
Oyphesale -Sect Institute	G Øl	Van	3	. *	x	Avoid contact with vitros must, foliage, and green bank.	Di-29 solution				
Carfantzazone-ethy	http	os:/	/ed	dis.i	fas.	ufl.edu/pdffiles/HS/HS141	.000.	pdf		Min. t	
Amic	(24)					Avoid contact with green those of fruit. Evoluted spray volume of at least 20 CPA required.	application	rate/year	appl/yr	btwn, a	
					-		Max 20 fl oz	(36 m2		14 da	
Olufaxinata-ammonium Ruly 280	H (10)	12	M	x	x	Warm temperatures, high heriolity, and lengte senight improve performance. Avoid contact or spray difficulty previous, starin, or foliage Spot busineset. L7 if terper gallon of water. Apply to endersable segetation foliage until we but pror to narolf.	42-12 A uz	266 fl tar (4.5 (b.a.l.)	3 at mus rate	Mah	
Paraquat Gramoione SL 2.0	D (22)	24	-	x	x	Addition of surfactant or crop of concentrate is essential for maximum contact activity. Avoid contact with citrus fruit, foliage, and green back.	25-40 pt	20 pt	\$		

UF IFAS Extension

2023-2024 Quick Reference Guide to S. H. Futch, B. A. Sellers, and S. S. Teems⁴ Preemergence/Residual Herbicides for Citrus Weed Control¹

Contact: Ramdas Kanissery (rkanissery@ufl.edu)

Products recommended in the Florida Citrus Production Guide and their effects on weed management.

This table lists registered pesticides that should be integrated with other pest management methods. Contact your local UF/IFAS Extension office for additional information (https://sfyLifas. ufl.edu/find-your-local-office/).

Herbicide ^a MOA ^b	REI	PHI	Weeds Controlled			_	Comments	Suggested Rate Per Acre		
		Hours	Day(s)	Annual Grasses	Perennial Grasses	Annual Broadleaf	Perennial Broadleaf			
Indaziflam* Alion	L (29)	12	7	x		x		Do not apply Alion within 30 days prior to planting or within 30 days after planting citrus trees.	5-6.5 oz.	
Bromacil Hyvar X 80 WP	C1 (5)	12	-	x	x	x		Do not use on deep-sandy, ridge soil types.	Trees 4 years and older: 2-4 lb. Trees 1-3 years old: 2-3 lb.	
Bromacil & Diuron Krovar I DF	C1, C2 (5, 5)	12		x	x	x		Do not use on deep-sandy, ridge soil types.	Trees 3 years and older: 4–6 lb. Trees 1–3 years old: 2–4 lb.	
Diuron Diuron 80DF	C2 (5)	12		x		x		Foliage contacted by diuron may develop a bleached or bronzed appearance.	2-4 lb.	
Diuron Direx/Diuron 4L	C2 (5)	12	-	x		x		Trees 4 years and older: 80 days between sequential applications.Trees less than 4 years: 60 days between sequential applications.	1.6-3.2 qt.	
Diuron Karmex 80DF	C2 (5)	12	-	x		x		Trees 4 years and older: 80 days between sequential applications.Trees less than 4 years: 60 days between sequential applications.	2-4 lb.	
Norflurazon Solicam 80DF	F1 (12)	12	30	x	x	x		For best results apply prior to weed emergence.	2.5-5 lb.	
Norfluration	E1	12	20	v	v	×		Apply stracood or third ustoring not during the algoring	2 2 of nor E00 as water Apply 10 as	

Contact

HS1438

Ramdas Kanissery

UF/IFAS SWFREC 2685 State Road N Immokalee, FL

Phone: (239) 658-3455 rkanissery@ufl.edu