

Nabil Killiny

Associate Professor
Plant Pathology
Citrus Research and Education Center, IFAS,
University of Florida

Insect transmission of plant pathogens

Mechanisms of transmission

Persistence

Circulation

Propagation

Transmission parameters

- Acquired mostly by nymphs.
- Circulates within insect body(cross the gut to haemolymph where it
- multiplys and form biofilm on the gut surface then invade salivary glands)
- Persists in insect during its entire life.
- <u>Inoculated</u> into new plants by adults.

Forms Biofilm

Quorum sensing!
Two components
system

Circulative

Bacteria pass through the biological barriers (Gut and salivary glands)!

Specific interactions (receptor-ligand)

Propagative

Bacterial multiplication in haemolymph!
Nutrition (sugars, Amino acids,)

Screening for target genes

Food coma

Target: Sucrose hydrolase

Osmotic potential:

- Hydrolysis of sucrose
- Transglycosidation into oligosaccharides (honeydew)
- Dilution with water by feeding on xylem sap or transferring body fluids

Target: Sucrose hydrolysis

- Nymphal mortality
- Shorter adult lifespan.
- Swollen abdomen phenotype

Screening for target genes Fly the coop

Target: abnormal wing disc

Screening for target genes

Lazy bone

Target: myosin

of jumps/ 10 sec

Control myl-dsRNA myh-dsRNA

Normal ACP adults
Internal organs and tissues are invisible

ACP adults merged from treated nymph
Flight muscles are visible

Screening for target genes

Breaking the insecticides resistance

Target: Cytochrome P450

OPEN & ACCESS Freely available online

Double-Stranded RNA Uptake through Topical Application, Mediates Silencing of Five CYP4 Genes and Suppresses Insecticide Resistance in Diaphorina citri

Nabil Killiny¹*, Subhas Hajeri², Siddharth Tiwari¹, Siddarame Gowda², Lukasz L. Stelinski¹

1 Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America, 2 Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America

4/27/2023

33151299

G Chudtsankov | Dreamstime.com

1-Virus induced gene silencing using CTV

Virus induced gene silencing

2- Laser delivery of dsRNA

Curled wings (cup shaped)

Incomplete molting

Stunted malformed body

Stretched wing

3- Gene-editing using CRISPR-Cas9

Establishment of an artificial medium to support the entire life (from egg to adult) cycle of D.citri

Uses of the medium

- Deliver dsRNA at earlier stages (eggs) for RNAi to study functional genomics such as transformer gene.
- Deliver plasmid for CRISPR/Cas9 for gene editing

ACKNOWLEDGE

Subhas Hajeri

William Dawson

United States Department of Agriculture National Institute of Food and Agriculture

David R. Gang Gowda Siddarame **Anders Omsland** Choaa El-Mohtar

Haluk Beyenal

WASHINGTON STATE

UNIVERSITY