Citrus Institute 2018

WEED MANAGEMENT IN CITRUS – CHALLENGES AND OPPORTUNITIES

Presenter: Ramdas Kanissery – Weed Scientist, Southwest Florida REC **Contribution from:** Steve Futch – Extension Agent IV, Multicounty, Citrus REC Lake Alfred

Weed management in FL citrus – Big picture

Impacts of weeds

Yield loss – from competition

Serves as alternate host for pest and diseases

Weed control

Preventive

- Mechanical
- Chemical popular methoa

Weed management programs
Row middle – Mechanical mowing
Chemical mowing
Under tree – Utilizing herbicides

Weed management in FL citrus – Big picture

Yield loss – from competition Serves as alternate host for pest and diseases Weed control

Preventive

Mechanical

Chemical – popular method

Weed management programs Row middle – Mechanical mowing Chemical mowing Under tree – Utilizing herbicides

Weed management in FL citrus – Big picture

Yield loss – from competition Serves as alternate host for pest and diseases

Weed control *Preventive Mechanical*

Chemical – popular method

Weed management programs

Row middle – Mechanical mowing Chemical mowing, wiping Under tree – Utilizing herbicides

Challenges

Managing problematic weeds

Minimizing crop injury

=

Challenges

Managing problematic weeds

Minimizing crop injury

Goat weed

Examples of problem weeds in citrus

Spanish needle

Dayflower

Pig weed

Parthenium

Guinea grass

Herbicide resistance and/tolerance is the major reason

Herbicide Resistance

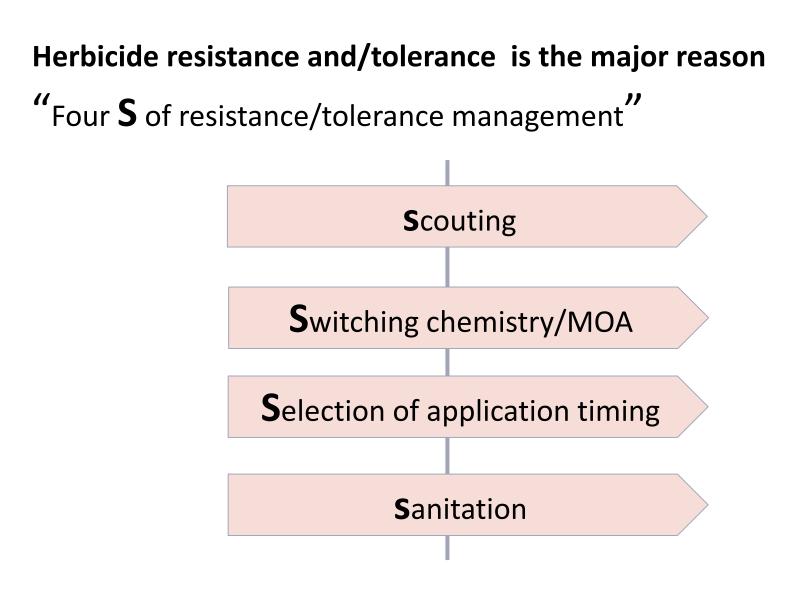
- Inherited ability of a weed to survive & reproduce following exposure to a dose of herbicide normally lethal to the weed
- Naturally occurring OR Induced

Herbicide Tolerance

- Inherent ability of weeds to withstand a certain dose of herbicide
- Repeated use of same product or mode of action
- Age or growth stage of weed

Eg., Glyphosate

Herbicide resistance and/tolerance is the major reason


Herbicide Resistance

- Inherited ability of a weed to survive & reproduce following exposure to a dose of herbicide normally lethal to the weed
- Naturally occurring OR Induced

Herbicide Tolerance

- Inherent ability of weeds to withstand a certain dose of herbicide
- Repeated use of same product or mode of action
- Age or growth stage of weed

Eg., Glyphosate

•Spanish Needle

- Herbicide tolerance

Ragweed Parthenium

- Herbicide resistance
- Herbicide tolerance

- Pigweed Amaranth
 - Herbicide resistance/tolerance
 - Seed bank formation in soil

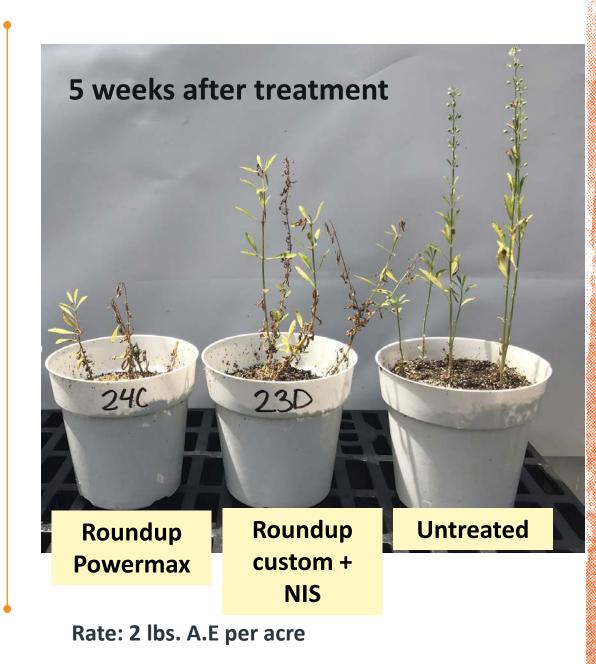
•Pigweed - 200,000 seeds per plant*

•Pigweed

- Seed bank formation in soil
- Compete for nutrients and moisture

Giant Amaranth/Pig weed

- Herbicide tolerance
- Seed bank formation


Goat weed

Goat weed tolerance

 <u>Slow response</u> to glyphosate products

•Dayflower

- Monocot
- Slow response to glyphosate

Dayflower growing in the drip line under the citrus tree

Potential new weed watch in citrus

Tropical whiteweed

- Ageratum conyzoides
- Also known as Billygoat weed

Tropical whiteweed Flowers: Note blue or purplish hue of flowers

Potential new weed watch in citrus

Tropical whiteweed

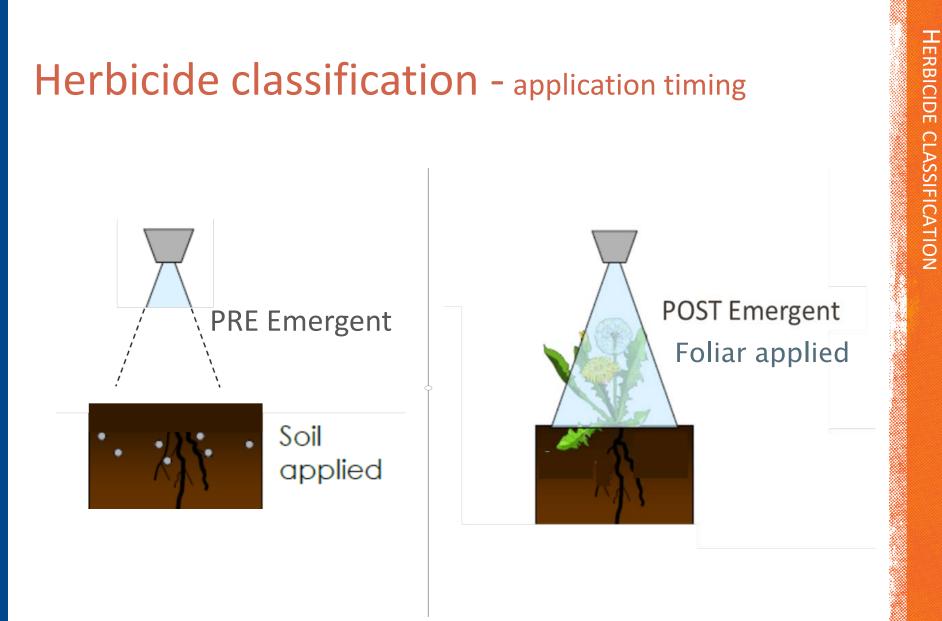
- Ageratum conyzoides
- Also known as Billygoat weed

Tropical whiteweed leaves - ovate and serrated

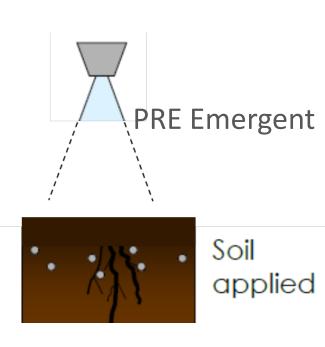
Managing problematic weeds

Selecting the right herbicide program

Synergy b/w herbicides


Selecting proper adjuvants

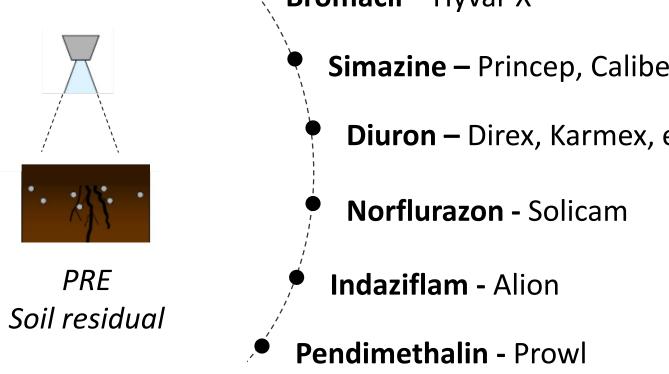
Managing problematic weeds


Selecting the right herbicide program

Synergy b/w herbicides

Selecting proper adjuvants

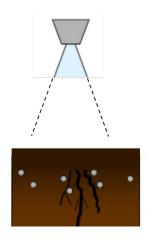
Herbicide classification - application timing


Residual or PRE-emergent: applied to soil - persist in soil and kill the emerging weed seeds and seedlings.

Minimum 'existent weed coverage' to ensure max soil incorporation

Rain or irrigation to activate

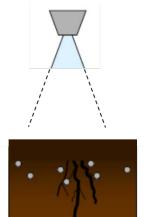
- **Active ingredient** Brand name(s)
 - Bromacil Hyvar X
 - Simazine Princep, Caliber 90, etc.
 - **Diuron** Direx, Karmex, etc.


* Please refer to Florida Citrus Production Guide 2017-18 for a complete list

- Active ingredient Brand name(s)
 - Bromacil Hyvar X
 - Simazine Princep, Caliber 90, etc.
 - **Diuron** Direx, Karmex, etc.
 - Norflurazon Solicam

* Please refer to Florida Citrus Production Guide 2017-18 for a complete list

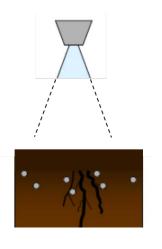
PRE Soil residual


Norflurazon – Solicam 80WP

- Inhibit carotenoid biosynthesis
- Chlorophyll destruction : no photosynthesis
 - Control of annual grass weeds and certain broadleaf weeds
 - May be injected through low volume drip irrigation
 - Use rate of 2.5 to 5 lbs/A
 - Maximum 10 lbs/A/yr

- Active ingredient Brand name(s)
 - Bromacil Hyvar X
 - Simazine Princep, Caliber 90, etc.
 - **Diuron** Direx, Karmex, etc.

* Please refer to Florida Citrus Production Guide 2017-18 for a complete list



PRE Soil residual

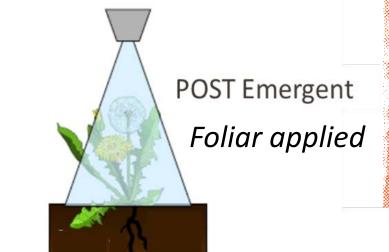
Indaziflam - Alion

- Inhibit cellulose biosynthesis
- Interfere with cell wall formation and cell division
- Control of broadleaf and grass weeds
- Often mixed with POST product
- Use rate of 5 to 6 oz/A
- Maximum 10.3 oz/A/yr

New PRE-emergent herbicide on the horizon

PRE Soil residual

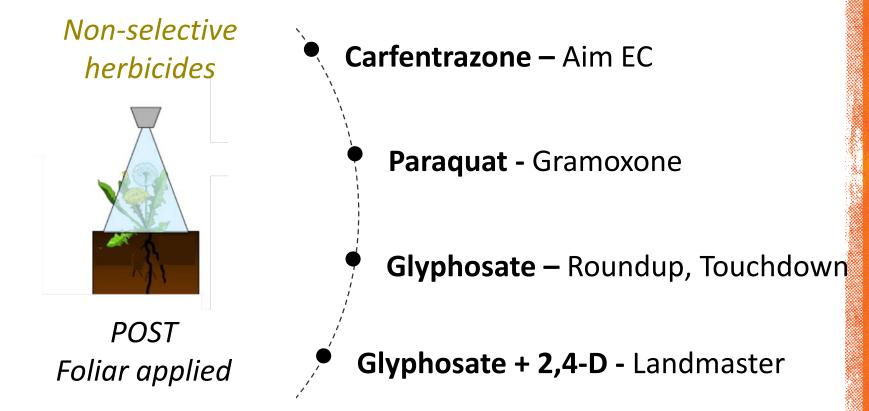
Flumioxazin – Chateau


- Inhibit PPO enzyme
- Accumulation of toxins in the plant
 - Control of grass weeds and broadleaf weeds
 - Use rate of 6 to 12 oz/A
 - Maximum 24 oz/A/yr

This supplemental label expires on December 31, 2019 and must not be used or distributed after this date.

DIRECTIONS FOR LISE

Herbicide classification - application timing



POST-emergent: applied to **foliage** after weed emergence

Usually no residual activity

Require surfactants

• Active ingredient – Brand name(s)

* Please refer to Florida Citrus Production Guide 2017-18 for a complete list

Non-selective herbicides

POST Foliar applied

Glyphosate – Roundup, Glyfos etc.

Mode of action

Blocks the formation of essential amino acids Inhibit protein synthesis

<u>Effect</u>

Starvation' and death of susceptible plants

- POST, non-selective, systemic
- For total or partial control of most weed species
- Rate 0.75-1.5 lb A.E. Annual weeds
- Rate 1.75-3.75 lb A.E. Perennial weeds

Non-selective herbicides

POST Foliar applied

Glyphosate – Roundup, Glyfos etc.

Mode of action

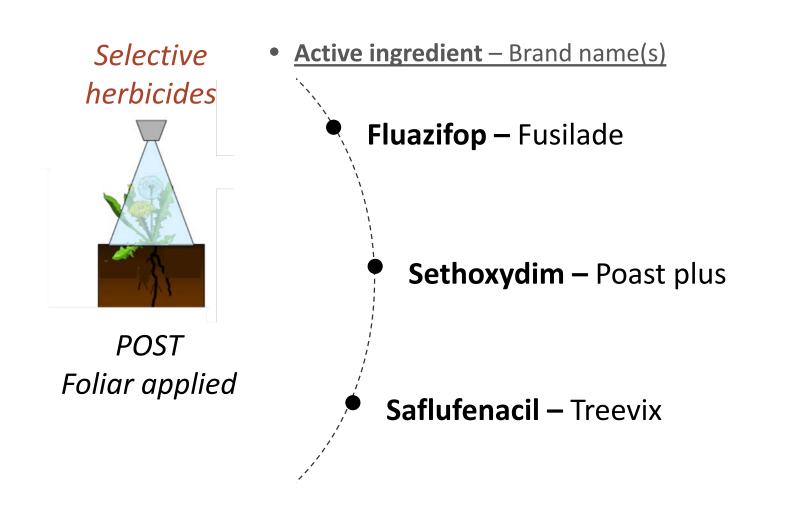
Blocks the formation of essential amino acids Inhibit protein synthesis

<u>Effect</u>

Starvation' and death of susceptible plants

- POST, non-selective, systemic
- For total or partial control of most weed species
- Rate 0.75-1.5 lb A.E. Annual weeds
- Rate 1.75-3.75 lb A.E. Perennial weeds
- □ Can be used for chemical mowing 0.125-0.37 lb A.E

Major POST-emergent herbicides used in FL citrus Glyphosate - used for chemical wiping row middles


Carpet wiper

Panel wiper

Glyphosate wiping:

- 5–10% solution carpet wiper
- 50–80% solution panel wiper

Major POST-emergent herbicides used in FL citrus

Selective herbicides


POST Foliar applied

Fluazifop-p-butyl (Fusilade)

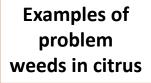
- For POST emergent control of annual and perennial grass
- No effect on broadleaf weeds
- Rate 1.0-1.5 pts/acre
- Tree age: 'Non-bearing'
- Do not apply to grasses under stress conditions

Major POST-emergent herbicides used in FL citrus

Selective herbicides

POST Foliar applied

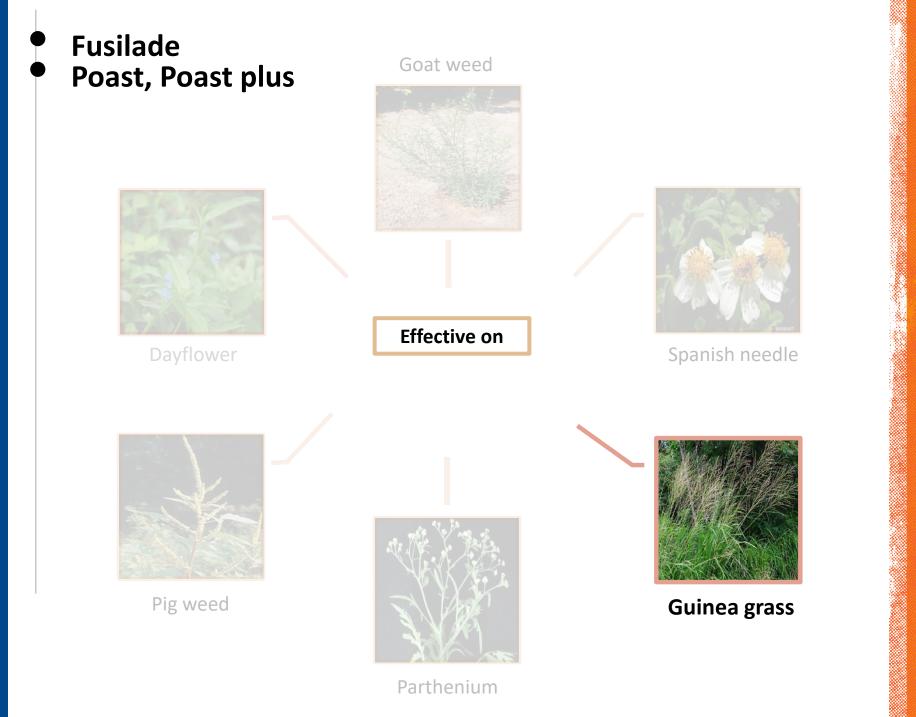
Sethoxydim – Poast, Poast plus


- For POST emergent control of annual and perennial grass
- No effect on broadleaf weeds
- Rate 2.25-3.75 pts/acre
- □ Tree age All
- Do not apply to grasses under stress conditions

Goat weed

Dayflower

Spanish needle


Pig weed

Parthenium

Guinea grass

Sethoxydim - Poast, Poast plus

Spot treatment

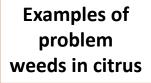
- 1.5 2.25% v/v solution
- Surfactant 1% COC
- Read label for directions

Guinea grass growing close to citrus

Selective herbicides

POST Foliar applied

Saflufenacil (Treevix)


- For POST emergent control of broadleaf weeds
- No effect on grasses
- Rate 1 oz/acre
- Not more than 3 oz/A/yr
- Must be applied with a surfactant

Goat weed

Dayflower

Spanish needle

Pig weed

Parthenium

Guinea grass

Saflufenacil - Treevix

Goat weed

Effective on

Dayflower

Spanish needle

Pig weed

Parthenium

Guinea grass

Saflufenacil – Treevix is effective on 'Parthenium' weed

Trial conducted at Wauchula, FL

Information credit: Steve Futch

Pest Type Pest Name		W Weed	W Weed	
Rating Date		6/26/2013	Ragweed parthe> 7/3/2013	7/16/201
Rating Type		% kill	% kill	% ki
Rating Unit		%	% NII	20 Ki
Number of Subsamples		1	/0 1	
Days After First/Last Applic.		6 6	13 13	26 20
Trt-Eval Interval		6 DA-A	13 DA-A	26 DA-A
Trt Treatment	Rate			
No. Name	Rate Unit	1	2	3
1 Roundup PowerMax	64 fl oz/a	3.8 d	1.5 c	10.0 c
LI700	0.5 % v/v			
Choice	4 pt/100 gal			
2 Roundup PowerMax	64 fl oz/a	11.3 d	6.3 c	16.3 c
AIM	2 fl oz/a			
Dynamic	0.5 % v/v			
Choice	4 pt/100 gal			
3 Rounup PowerMax	64 fl oz/a	93.8 a	95.0 a	92.5 a
Treevix	1 oz wt/a			
L1700	0.5 % v/v			
Choice	4 pt/100 gal			
4 Roundup PowerMax	64 fl oz/a	57.5 b	20.0 b	77.5 ab
Matrix	2.0 oz wt/a			
LI700	0.5 % v/v			
Choice	4 pt/100 gal			
5 Gramoxone Inteon	2 qt/a	35.0 c	13.8 b	63.8 ab
LI700	0.5 % v/v			
Choice	4 pt/100 gal			
6 Gramoxone Inteon	2 qt/a	35.0 c	15.0 b	42.5 bc
Aim	2 fl oz/a			
Dynamic Choice	1 % v/v			
	4 pt/100 gal	00.5		
7 Rely 280 LI700	3 qt/a	92.5 a	88.8 a	70.0 ab
Choice	0.5 % v/v 4 pt/100 gal			
		01.0 -	00.0	04.0
8 Rely 280 Karmex 80WP	3 qt/a 3 lb/a	91.3 a	88.8 a	81.3 a
LI700	0.5 % v/v			
Choice	4 pt/100 gal			
	, portoo gui			

Considerations for selecting herbicide programs

Choosing the right herbicide program:

Weed profile in the grove

Type of weed: grass, broadleaf, sedges

Growth stage : seedling, mature, seed production

Citrus tree age

Young groves require greater attention

Higher sensitivity of young tree trunks

• Soil and Weather

Considerations for selecting herbicide programs

Choosing the right herbicide program:

Weed profile in the grove

Type of weed: grass, broadleaf, sedges

Growth stage : seedling, mature, seed production

Citrus tree age

Young groves require greater attention

Higher sensitivity of young tree trunks

Soil and Weather

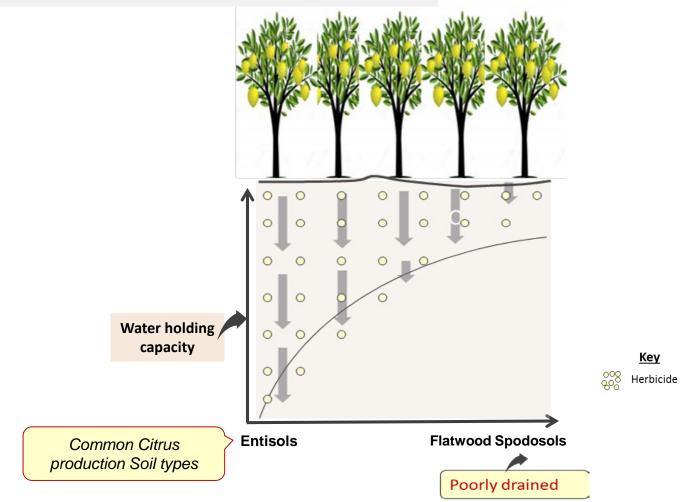
Considerations for selecting herbicide programs

Choosing the right herbicide program:

Weed profile in the grove

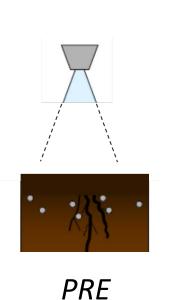
Type of weed: grass, broadleaf, sedges

Growth stage : seedling, mature, seed production


Citrus tree age

Young groves require greater attention

Higher sensitivity of young tree trunks


• Soil and Weather

Herbicide movement in Florida citrus production

Some regions within the state are prone to leaching due to high amount of rainfall and inherent soil type

Adsorption coefficients of PRE-emergent herbicide used in FL citrus

Soil residual

Active ingredient	K _{oc} mL/g
Bromacil	32
Simazine	130
Diuron	480
Norflurazon	700
Indaziflam	<1000
Pendimethalin	17,200

<u>Source</u> 9th edition of the Herbicide Handbook (Senseman, 2007) The data of Indaziflam were taken from USEPA (2011)

Managing problematic weeds

Selecting the right herbicide program

Synergy of herbicides

Selecting proper adjuvants

Herbicide synergy – Mixing herbicides

Synergy effect:

The total effect of mixing herbicides is greater or more prolonged than the sum of the effects of the two taken independently.

<u>synergy</u> * 1 + 1 = 3

Herbicide synergy – Mixing herbicides in one application

Synergy effect:

The total effect of mixing herbicide is greater or more prolonged than the sum of the effects of the two taken independently.

additive

* 1 + 1 = 2

<u>synergy</u>

* 1 + 1 = 3

antagonistic

* 1 + 1 = 1 or less

Herbicide synergy – Mixing herbicides in one application

Advantages

- Reduce application number & cost
- Broad-spectrum & prolonged weed control

However,

Need to ensure

Mixing compatibility Proper adjuvant selection Absence of any antagonistic effects

Herbicide synergy – Mixing herbicides

Advantages

- Reduce application number & cost
- Broad-spectrum & prolonged weed control

However,

Need to ensure

- Mixing compatibility Label, Jar test
- Proper adjuvant selection
- Absence of any antagonistic effects

Herbicide synergy — in citrus weed management

Trial conducted in Immokalee, FL

Active ingredients	Herbicide products in the test mixture	Rate oz product/A	Weed control (%) 150 DAT
Indaziflam	Alion	3	58*c
Indaziflam	Alion	5	89 ^b
Flumioxazin	Chateau	6	18 ^d
Flumioxazin	Chateau	8	20 ^d
Indaziflam Flumioxazin	Alion Chateau	3 6	82 ^b (65) +17
Indaziflam Flumioxazin	Alion Chateau	5 8	94ª (91) +3
Control	n/a	n/a	5 ^e

DAT: Days After Treatment

*Means with the same letter superscripts within a column do not significantly differ (Tukey's HSD, P< 0.05)

All treatments including control received glyphosate (Roundup Power Max) at 88 oz product per acre.

Expected responses for the mixtures are shown in the parenthesis following the observed response. The difference between observed and expected values are shown by a + sign to indicate synergism

Herbicide synergy — in citrus weed management

Active ingredients	Herbicide products in the test mixture	Rate oz product/A	Weed control (%) 150 DAT
Indaziflam	Alion	3	58*c
Indaziflam	Alion	5	89 ^b
Flumioxazin	Chateau	6	18 ^d
Flumioxazin	Chateau	8	20 ^d
Indaziflam Flumioxazin	Alion Chateau	3 6	82 ^b (65) +17
Indaziflam Flumioxazin	Alion Chateau	5 8	94 ^a (91) +3
Control	n/a	n/a	5 ^e

DAT: Days After Treatment

*Means with the same letter superscripts within a column do not significantly differ (Tukey's HSD, P< 0.05)

All treatments including control received glyphosate (Roundup Power Max) at 88 oz product per acre.

Expected responses for the mixtures are shown in the parenthesis following the observed response. The difference between observed and expected values are shown by a + sign to indicate synergism

– Johnson grass

— Spurge

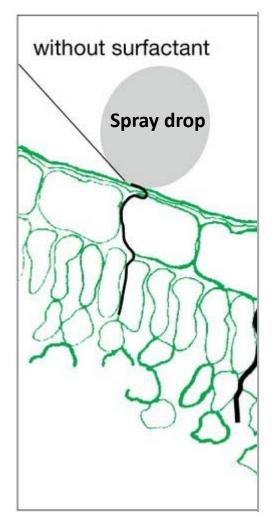
— Nutsedge: yellow and purple

— Pusley

— Goatweed

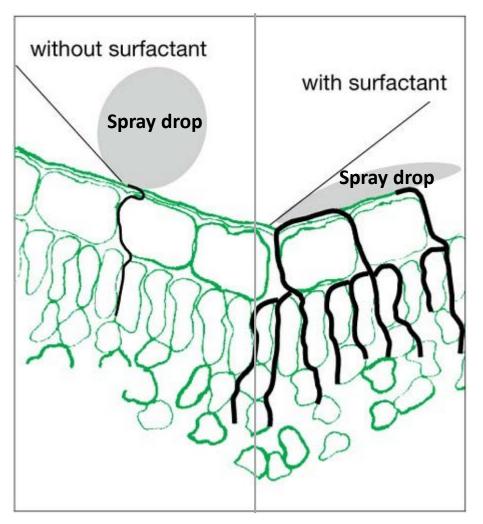
Herbicide synergy — in citrus weed management

Control 100 DAT Indaziflam + Flumioxazin 100 DAT


Managing problematic weeds

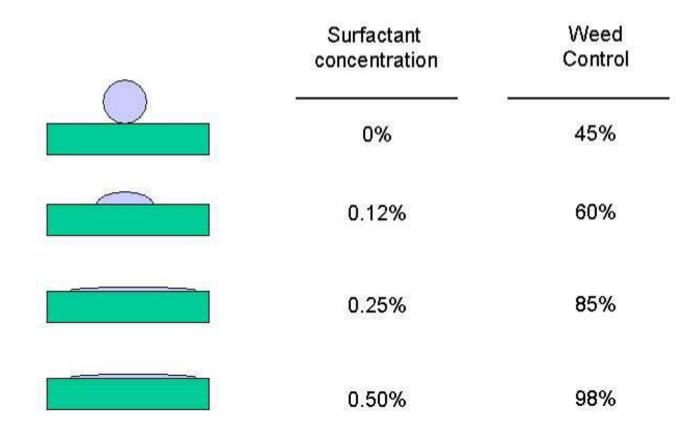
Selecting the right herbicide program

Synergy of herbicides

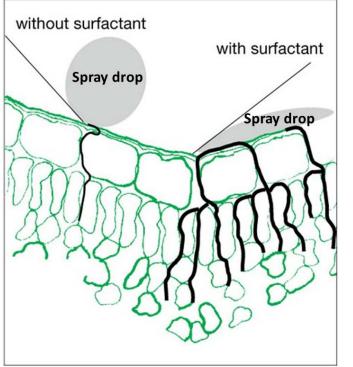

Selecting proper adjuvants

Surfactants – indispensable 'adjuvant/ingredient' for POST emergent herbicides

Surfactants reduce the 'surface tension' of spray droplets


Surfactants – indispensable 'adjuvant/ingredient' for POST emergent herbicides

Spray Droplets with **low surface tension** are more likely to be retained and penetrated onto plant surfaces


Info credit: PSU extension

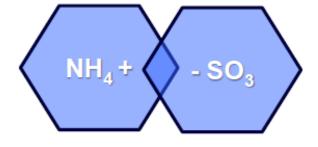
Surfactant addition = better weed control for POST-emergent herbicides



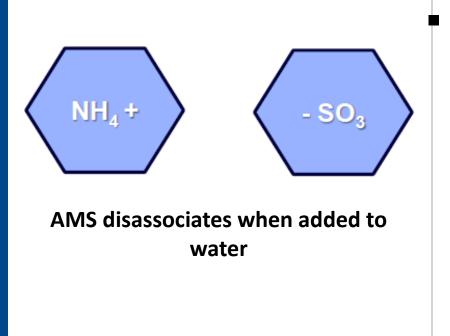
Source: Bob Hartzler, ISU Weed Science

POST herbicides benefit most - from the use of appropriate surfactants

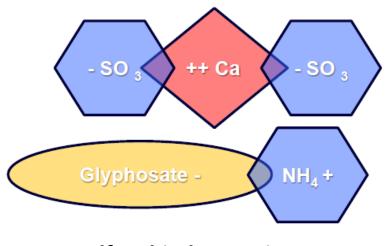
- Glyphosate + Non-ionic surfactant
- Paraquat + Crop Oil Concentrate
- Treevix + Methylated Seed Oil


Interaction b/w cations and the herbicide reduce efficacy

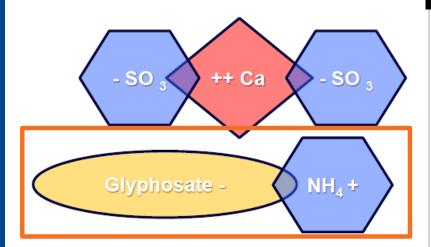
Glyphosate is NOT absorbed in this form


Considered essential for herbicides like glyphosate

Hard water: contains high concentrations of dissolved minerals


Example: Ca^{2+,} Mg^{2+,} Fe³⁺

Ammonium sulfate (AMS)



Ammonium sulfate (AMS)

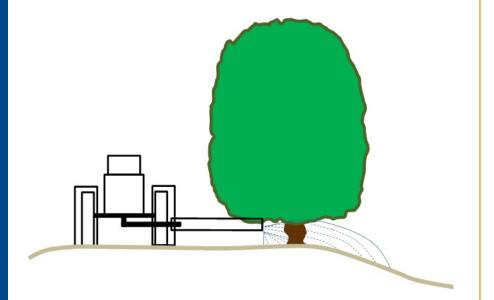
Sulfate binds to cations Ammonium binds to glyphosate

Ammonium sulfate (AMS)

Sulfate binds to cations Ammonium binds to glyphosate Glyphosate is absorbed in this form

Ammonium sulfate (AMS)

Application rate is 7 to 18 lb/100 gal 8 to 10 lbs/100 gal common rate


Must be added to tank <u>before</u> herbicide

Challenges

Managing problematic weeds

Minimizing crop injury

Improper herbicide application

Inadequate weed control

Potential for herbicide phytotoxicity to citrus trees

Herbicide phytotoxicity to citrus

- Glyphosate
 - 'Contact' injury on foliage

Herbicide phytotoxicity to citrus

- Glyphosate
 - 'Contact' injury on fruits

Photo Credits: Steve Futch

Herbicide phytotoxicity to citrus

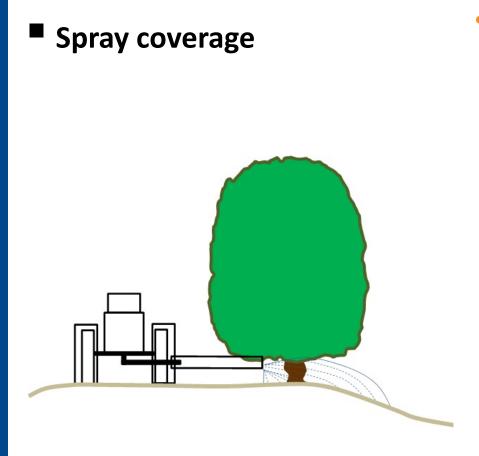
Paraquat

 'Contact' injury on foliage & fruits

Photo Credits: Steve Futch

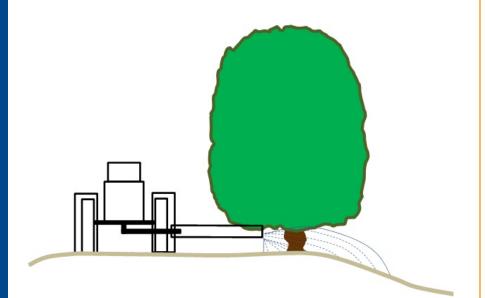
- Herbicide phytotoxicity to citrus
 - Diuron

Contact phytotoxicity

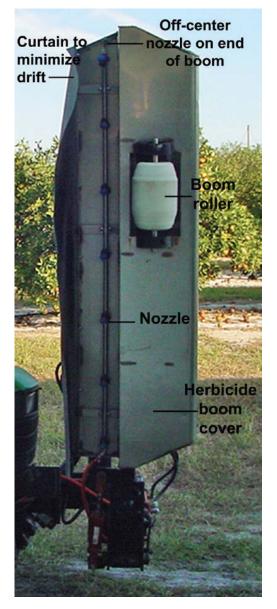

Photo Credits: Steve Futch

Herbicide phytotoxicity to citrus

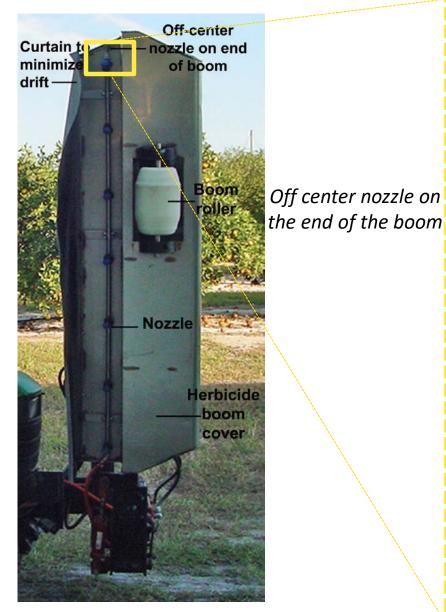
Indaziflam - Alion



Contact phytotoxicity


- Herbicide product
- Application speed
- Ground conditions
- Application pressure
- Boom height
- Angle of the OC nozzle

Spray coverage


- Herbicide product
- Application speed
- Ground conditions
- Application pressure
- Boom height
- Angle of the OC nozzle

Herbicide boom spraying - OC nozzle angle

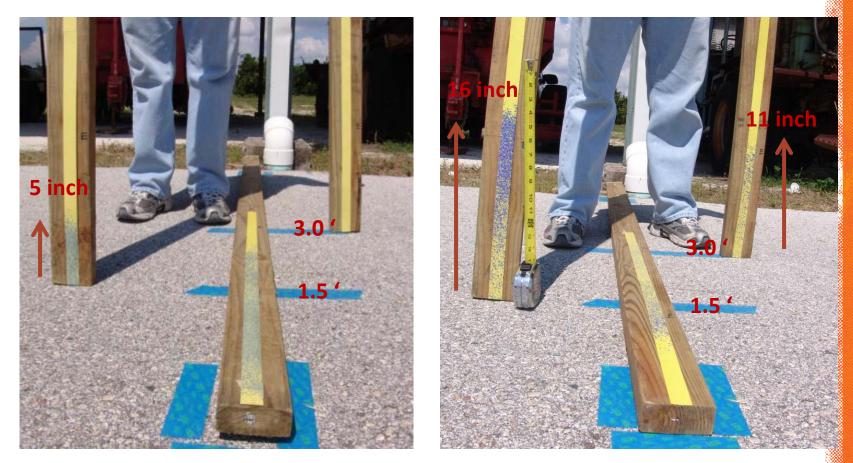
Information Credits: Steve Futch

Herbicide boom spraying - OC nozzle angle

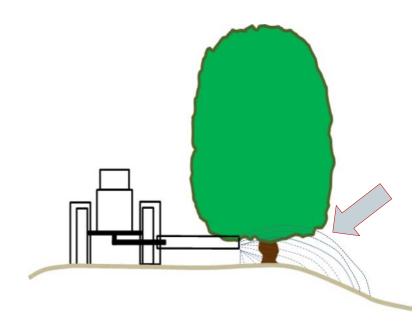
Information Credits: Steve Futch

0 0

40⁰

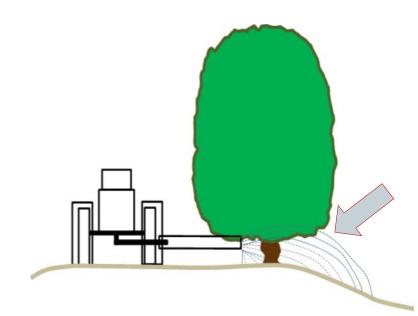

Reach of the spray is impacted by the OC nozzle angle

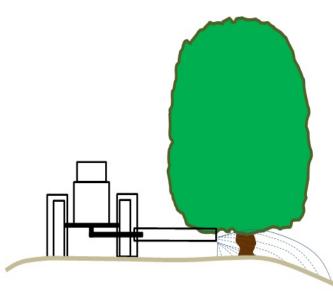
Off Center (OC)
 Nozzle angle


- Greater OC nozzle angle
- Higher and further beyond the end of the boom spray is directed
- Increases the chances for foliage and fruit phytotoxicity in citrus

Ref: Steve Futch et al Study conducted at the CREC, Lake Alfred

Reach of the spray is impacted by the OC nozzle angle OC nozzle at 10° OC nozzle at 40°

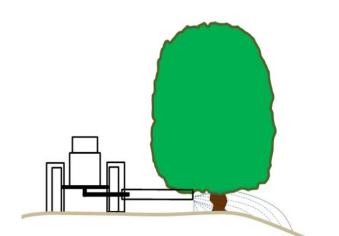

Ref: Steve Futch et al Study conducted at the CREC, Lake Alfred Reach of the spray is impacted by the OC nozzle angle



Increased OC nozzle angle

 spray droplets may drift into citrus foliage and fruits

Reach of the spray is impacted by the OC nozzle angle


Increased OC nozzle angle

 spray droplets may drift into citrus foliage and fruits

Optimum OC nozzle angle

- adequate coverage under tree
- no herbicide injury

Apply accurately..

- Maintain proper boom height/angle
- Deliver the herbicide to the target
- Avoid tree foliage, and fruit contact
- **Application volume**
 - 20-50 GPA for under tree
 - 10-25 GPA for chemical mowing
 - **Operate equipment safely**

Citrus weed management: summary

Challenges

 Managing problematic weeds

 Minimizing crop injury

Opportunities

- Selecting the right herbicide program
 - POST & PRE
 - Selective herbicides
- Synergy b/w herbicides
 - Mix compatibility
- Selecting proper adjuvants
 - Surfactants
 - Water conditioners
 - Avoid foliar and fruit contactProper OC nozzle angle

Citrus weed management: summary

Challenges

 Managing problematic weeds

 Minimizing crop injury

Opportunities

- Selecting the right herbicide program
 - POST & PRE
 - Selective herbicides
- Synergy b/w herbicides
 - Mix compatibility
- Selecting proper adjuvants
 - Surfactants POST
 - Water conditioners
- Avoid foliar and fruit contact
 - Proper OC nozzle angle

"What are the top three most problematic weeds on your grove?" "What are the top three most problematic weeds on your grove?"

"Every weed on the planet"

Thank you...

SWFREC weed science team

<u>Contact</u>

Ramdas Kanissery

UF/IFAS SWFREC 2685 State Road N Immokalee, FL

Phone: (239) 658-3455 rkanissery@ufl.edu