

UPDATE ON IRRIGATION AND NUTRIENT MANAGEMENT STUDIES OF HLB AFFECTED TREES

Davie Kadyampakeni

UF/IFAS CREC

Outline

Status of HLB in FL: What we know now

Irrigation studies for managing HLB: Examples

Nutrition studies for managing HLB: Highlights

Summary

Acknowledgements

Current Status of HLB

- Citrus accounts for \$10 billion in economic activity
- Pre-HLB 240 million boxes
- Current 80 million boxes, about 67% reduction in production
- Production costs up to \$2100 per acre due to HLB
- Significant reduction in production area
- Declined tree performance, root loss and significant defoliation

Irrigation strategies for managing HLB

- Preventative measures: HLB negative (healthy trees)
 - Frequent irrigation (daily or multiple times a day) e.g. Citrus Under Cover FLORIDA Production System

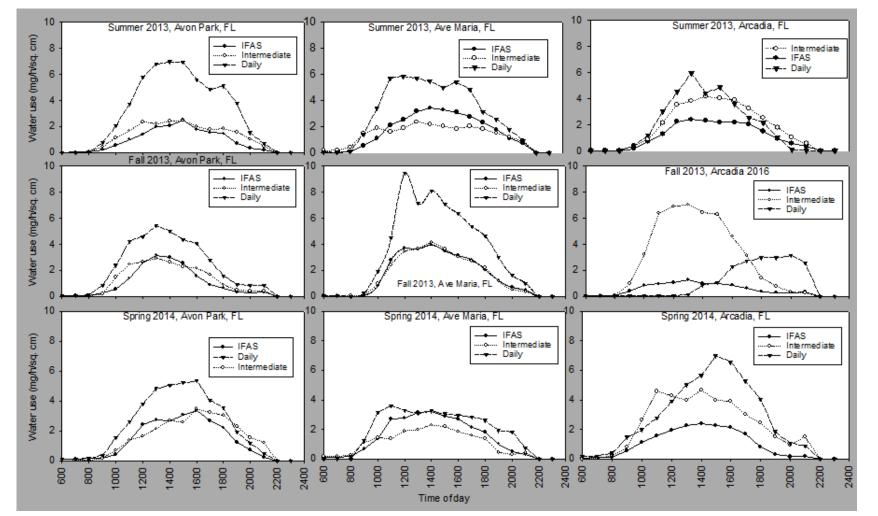
UNIVERSITY

- Regulated deficit irrigation
- Partial root zone drying
 Plus Asian psyllid control
- Curative management of HLB positive trees (asymptomatic trees)
 - Daily irrigation plus Asian psyllid control
 - Managing pH to optimum levels for nutrient availability
 - Improved nutrition programs via fertigation
- Remediation/Management of HLB affected trees (symptomatic trees)
 - Daily irrigation plus Asian psyllid control
 - Managing pH to optimum levels for nutrient availability
 - Fertigation practices

Irrigation strategies for managing HLB (2)

Field studies on irrigation conducted in:

• Irrigation studies at 3 sites: Ave Maria, Avon Park, Arcadia (2013-2014)


Comparison of Daily, IFAS and Intermediate Irrigation Schedules based on FAWN evapotranspiration

• Advanced Citrus Production Systems (ACPS) studies:

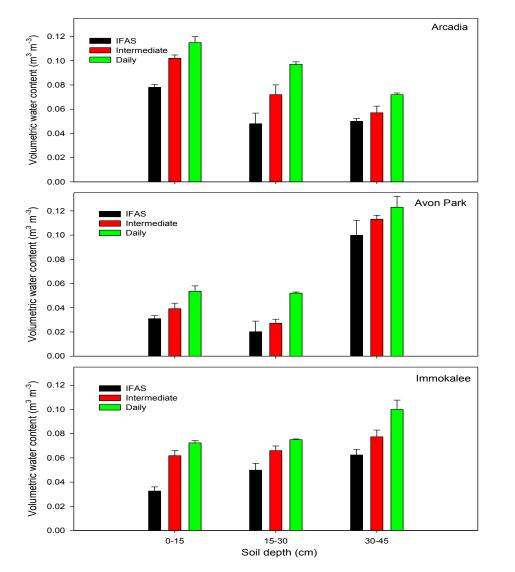
Two Sites: Immokalee at UF/IFAS, SWFREC, and Lake Alfred (2008 to 2011) Comparison of drip and modified microsprinkler irrigation with grower practices

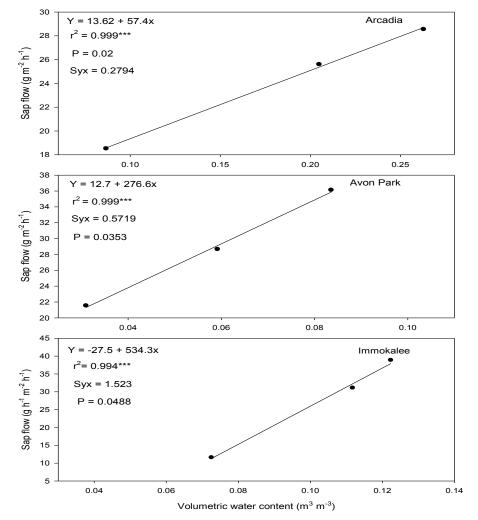
Greenhouse studies conducted at Immokalee, SWFREC (2014-2015)
 Comparison of HLB vs non-HLB affected citrus

Irrigation studies

• Daily > **FLORIDA** Intermediate > IFAS irrigation scheduling

 Daily irrigation could help in managing HLB affected trees, reduce tree water stress


Water use of HLB affected trees in south west and central Florida

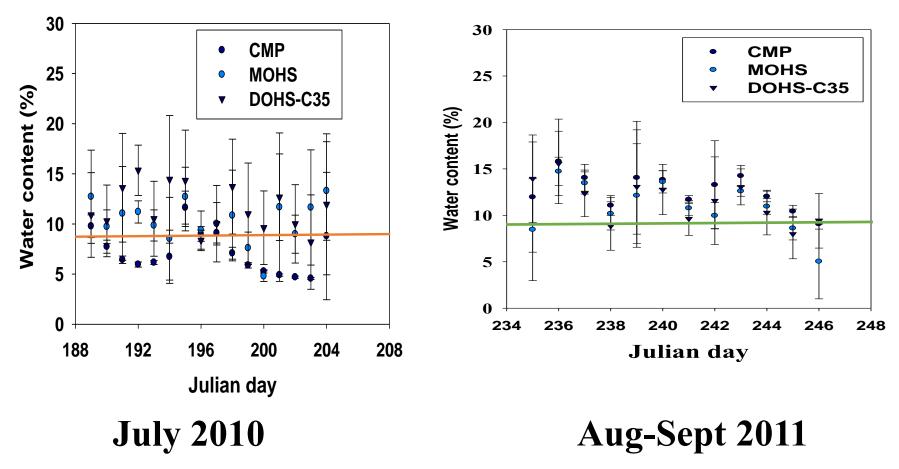

Irrigation studies (2)

Total available water (%) in southwest and central Florida

			Commercial sit	te	UNIVERSITY of
Irrigation treatment	Soil depth (cm)	Arcadia	Avon Park	Immokalee	FLORIDA
Daily					
	0-15	68.9dc	80.7b	68.1bc	
	15-30	72.2c	58.7c	75.3b	
	30-45	98.2a	87.8a	97.9a	
Intermediate					
	0-15	52.2fg	56.3cd	64.5c	
	15-30	58.9ef	61.4c	46.6d	
	30-45	98.8a	74.3b	42.3d	
IFAS					
	0-15	48.1g	49.7d	46.6d	
	15-30	80.9b	50.4d	32.1e	
	30-45	62.3de	61.9c	69.3bc	
Increasing TAW wit	h donth groator	ANOVA	op 6 inches.		
Increasing TAW wit	n deptil, greater	Arcadia	Avon Park	Immokalee	
Grsatere of Wariationt	op 6 inch than lov	wer 🍕 - 🎗 🕏 inche	es foppaily than	Intermediate	and IFAS
irrigationstreatment		<.0001	<.0001	<.0001	

Irrigation studies (3)

ACPS studies


Irrigation method	HLB	Site	Water use per canopy vol. lbs/ft ³ /d	Water use per leaf area lbs/ft²/d	UNIVERSITY of FLORIDA
Conventional	-	Ridge	0.28±0.13a	0.35±0.20a	
Drip	-	Ridge	0.24±0.01a	0.24±0.01a	
RM	-	Ridge	0.20±0.18a	0.23±0.20a	
Conventional	+	Flatwoods	0.19±0.05a	0.24±0.04a	
Drip	+	Flatwoods	0.28±0.10a	0.29±0.08a	
RM	+	Flatwoods	0.19±0.09a	0.46±0.19a	

RM=Restricted microsprinkler.

•Daily water use was not statistically different between the ACPS irrigation methods compared with the Conventional grower practices even though irrigated area is smaller.

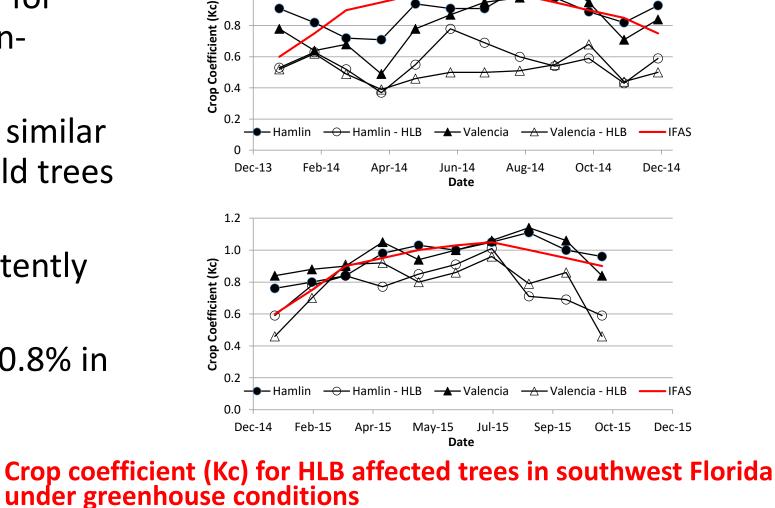
ACPS (2)

Soil moisture at 10 cm was close to or slightly above field capacity in the range of 7 and 15%

Greenhouse studies (1)

Water use of HLB affected trees in southwest Florida under greenhouse conditions

Month -year	ETo	ET _c (mm	ET _c diff. (%) [‡]	
	$(mm d^{-1})$	Hamlin-Non HLB	Hamlin-HLB	
Jan-Jun-14	3.57	2.97	2.23	23.73
Jul-Dec-14	4.42	4.16	2.63	34.82
Jan-Jun-2015	3.38	4.08	2.83	29.82
Jun-Oct-15	3.73	4.94	3.18	35.20
Overall Average	3.79	4.00a**	2.69b**	30.75
		Valencia-Non HLB	Valencia-HLB	
Jan-Jun-14	3.57	2.83	2.22	22.28
Jul-Dec-14	4.42	3.97	2.83	28.85
Jan-Jun-2015	3.38	3.85	2.69	30.98
Jun-Oct-15	3.73	4.79	3.56	26.42
Overall Average	3.79	3.82a**	2.80b**	26.99**


• 22 to 35% greater water use for Non-HLB affected trees

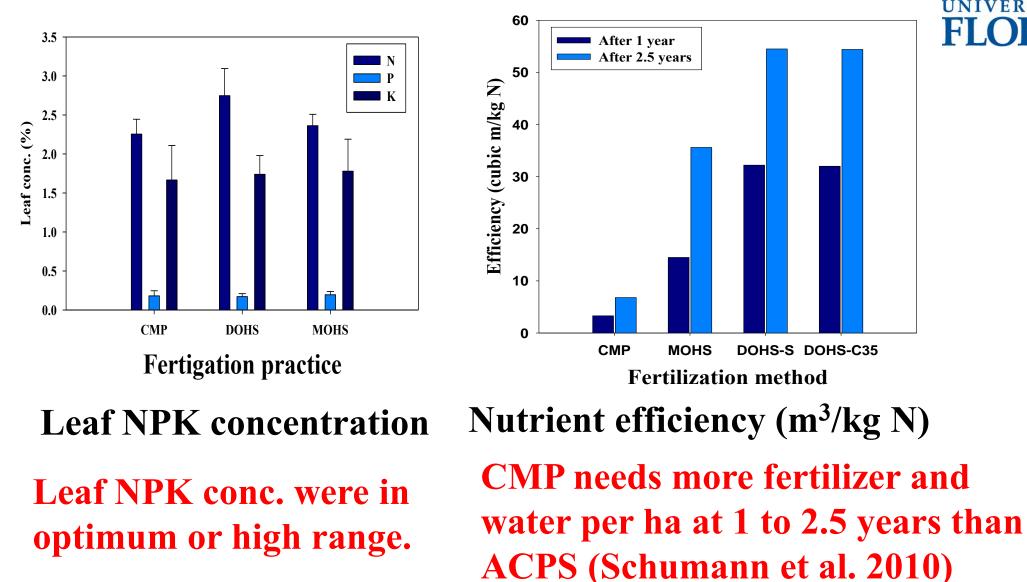
- Inter-season and annual variability in water use
- Comparable water use between varieties

Greenhouse studies (2)

1.2

- Patterns of K_c similar for HLB affected and nonaffected trees
- Non-affected tree K_c similar to those found to field trees prior to greening
- Infected trees consistently with lower K_c
- 35.2% in 2014 and 20.8% in 2015

Nutrition studies for managing HLB: Highlights


• Advanced Citrus Production Systems (ACPS) studies:

Two Sites: Immokalee at UF/IFAS, SWFREC, and Lake Alfred (2008 to 2011)

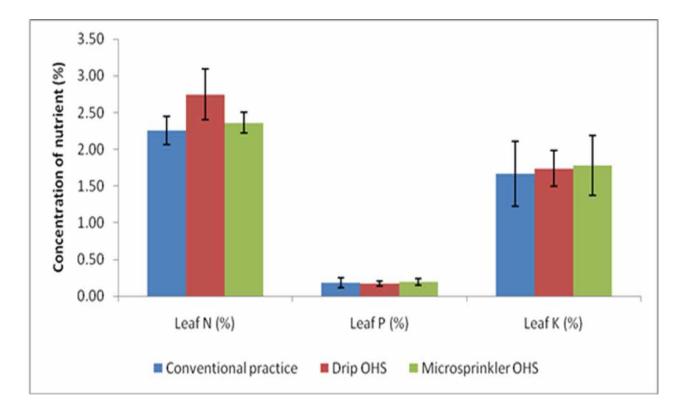
Comparison of drip and modified microsprinkler fertigation systems with Conventional grower practices

Two ACPS systems: drip (DOHS) and microsprinkler (RM, MOHS), and conventional microsprinkler practice (CMP)

ACPS Nutrition Studies

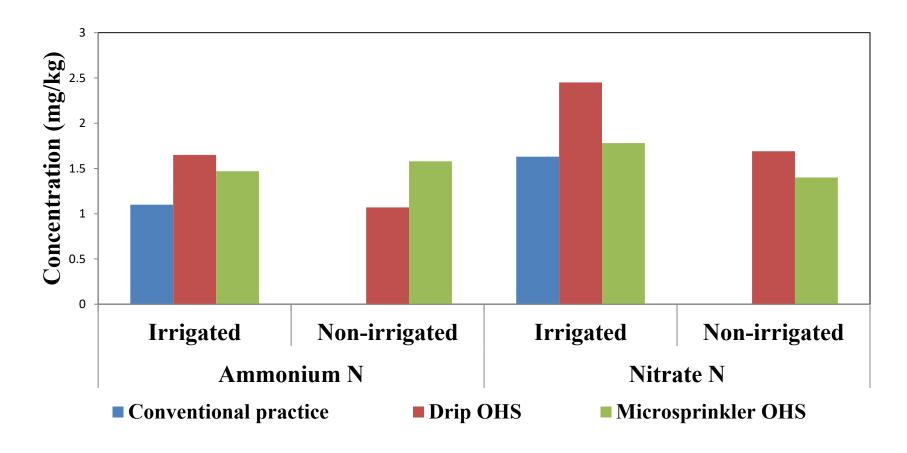
ACPS Nutrition Studies (2)

N and P accumulation on Immokalee sand


Fertigation method	СМР	Drip	RM	СМР	Drip	RM
Tissue	N (kg ha ⁻¹)		P (kg ha ⁻¹)			
Leaves	24.00	49.78	37.10	1.34	1.69	1.48
Fruits	22.40	15.78	29.98	2.68	1.03	2.28
Branches/trunk	20.70	28.38	26.44	4.76	3.80	4.22
Roots	11.60	20.82	20.20	2.85	2.98	2.96
Total	78.70	114.78	113.72	11.64	9.52	10.95

High N accumulation with ACPS than CMP but P accumulation similar for all practices.

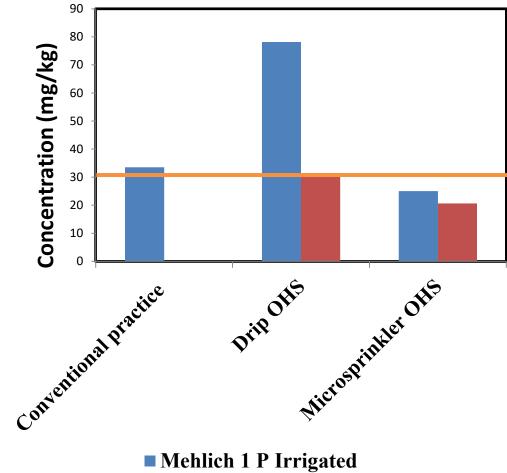
ACPS Nutrition Studies (3)



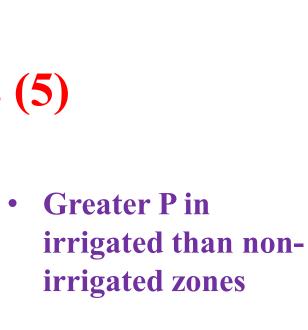
Leaf NPK concentration (%) determined in June 2009 at Immokalee.

- Sufficient NPK concentrations.
- Drip OHS was effective in enhancing N uptake compared with the other two irrigation methods studied.
- Leaf P concentration was high (0.17-0.30%) in all treatments
- Leaf K concentration was within optimum and high ranges (1.2-2.4%) suggesting
- No significant differences between ACPS and Conventional method.

ACPS Nutrition Studies (4)


UNIVERSITY of FLORIDA

- Greater inorganic

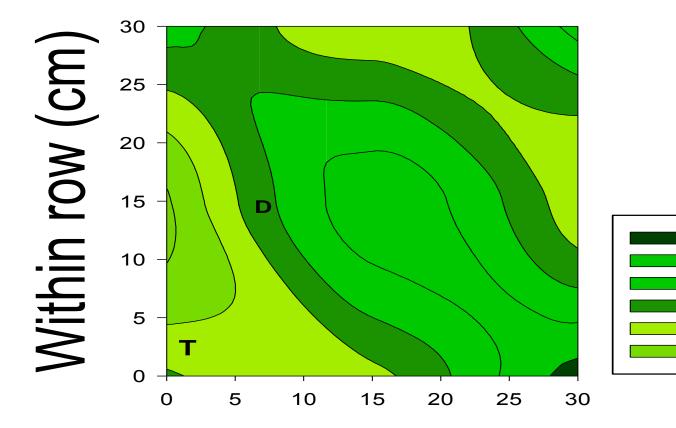

 N in irrigated than
 non-irrigated
 zones
- Better N contents in irrigated zones of ACPS than Conventional.

Ammonium and nitrate distribution in the irrigated and non-irrigated zone

ACPS Nutrition Studies (5)

• Soil P contents in irrigated zones of Drip greater than Conventional.

UNIVERSITY of


FLOR

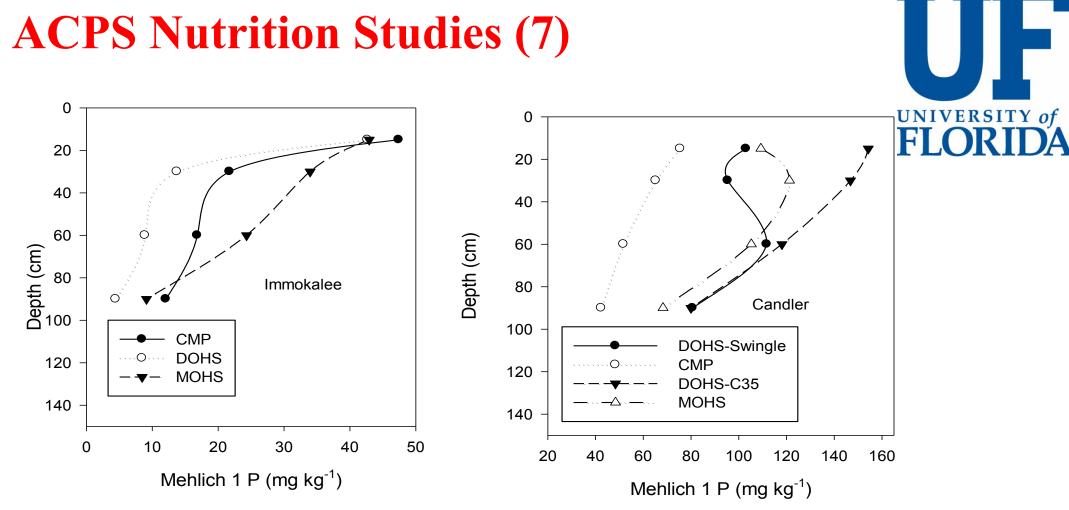
Mehlich 1 P Non-irrigated

Soil P distribution in the irrigated and non-irrigated zones

ACPS Nutrition Studies (6)

Higher NPK conc. in irrigated vs. non-irrigated zones of drip fertigation. D=area below dripper, T=tree

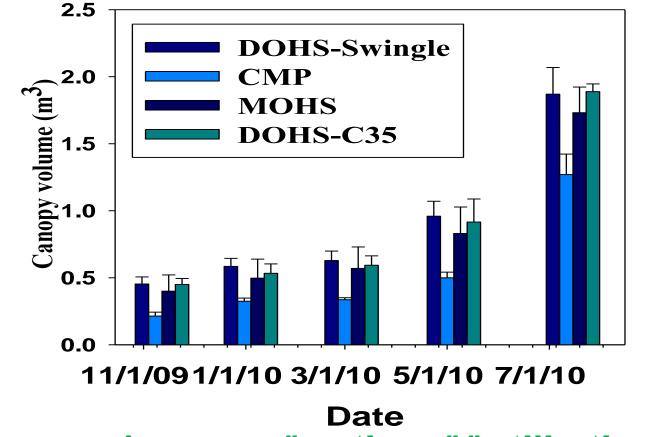
0.4


0.5

0.6

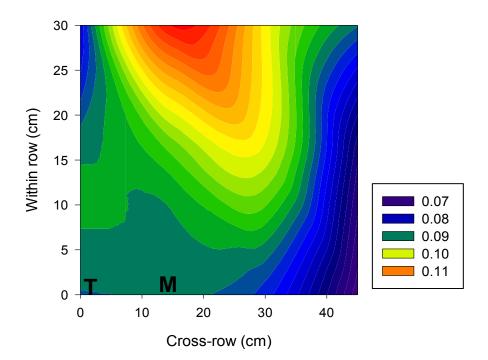
0.8

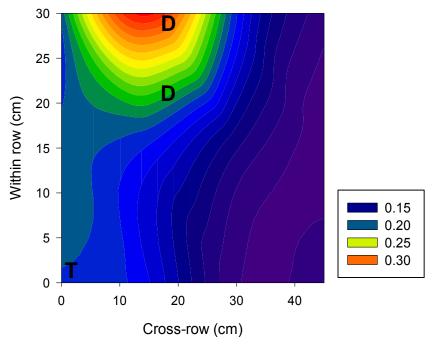
0.9


Cross-row (cm) Lateral ammonium-N (mg/kg) distribution in July 2010 at the Lake Alfred site using drip fertigation.

Vertical P distribution at Immokalee and Lake Alfred sites in 2010 Less P leaching with OHS than CMP in 2010. High P at Lake Alfred than Immokalee

ACPS Nutrition Studies (8)




ACPS fertigation had greater tree size than conventional practice

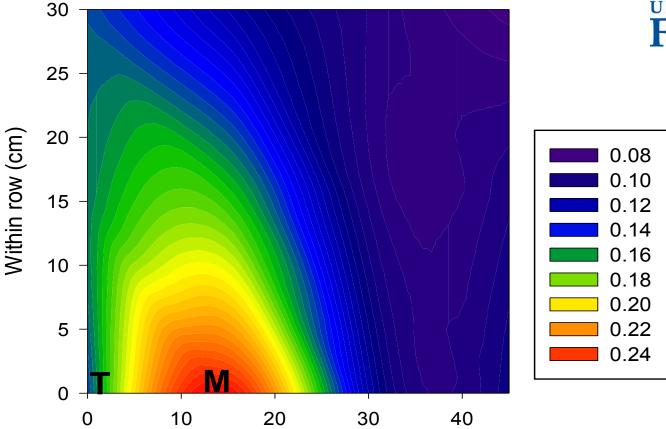
Date Canopy volume as a function of fertilization practice at the Lake Alfred site **ACPS Nutrition Studies (9)**

Lateral RLD (cm cm⁻³) distribution using CMP

Lateral RLD (cm cm⁻³) distribution using DOHS

T=tree, M=microsprinkler Roots uniformly distributed around the tree

T=tree, D=dripper, Roots concentrated below the drippers



ACPS Nutrition Studies (7)

Positions in the irrigated zones of showed higher root density than non-irrigated zones

M=microsprinkler

T=tree

Cross-row (cm) Lateral root density (cm cm⁻³) distribution using ACPS microsprinkler

Daily, frequent irrigation critical for improved tree performance, soil moisture distribution and water use

HLB affected trees use 22 to 35% less water than the non-affected trees.

ACPS practices could be adapted to grower practices for vigorous tree growth, water use, greater root density and nutrient accumulation.

Acknowledgements

- Dr. Morgan, Dr. Ebel, Dr. Hamido UF/IFAS SWFREC
- Dr. Schumann, UF/IFAS, CREC
- Grove Space:
 - UF/IFAS SWFREC, Immokalee, FL
 - Gapway Groves, Auburndale, FL
 - Pacific Inc., Ave Maria, FL
 - Orange Co, Arcadia, FL
 - Ben Hill Griffin, Avon Park, FL

• Funding: Southwest FL WMD, FDACS, UF/IFAS

