MODIFICATION OF CITRUS IRRIGATION WATER

Kelly T. Morgan University of Florida, SWFREC Immokalee

Bicarbonate bad guy in Western soil, water

Reprinted from California-Arizona Farm Press, June 20, 1998

- Water from deep aquifers often contains elevated levels of bicarbonates.
- Bicarbonates can accumulate in irrigated area.
 High levels of bicarbonates pull calcium out of colution, reducing the presence of calcium on
 - solution, reducing the presence of calcium on soil exchange sites.
- Bicarbonate levels in irrigation water are:
 - 0-100 ppm (low)
 - 100-180 ppm (moderate
 - 180-600 ppm (severe)

Alkalinity

- Primarily determined by presence of bicarbonates (HCO₃⁻), Carbonates (CO₃⁻), and hydroxides (OH⁻) in water.
- A measure of the capacity of water to neutralize acids.
 - Alkaline compounds in water remove H⁺ ions and lower the acidity of water (increase pH).
- Limits nutrient availability in soils

Bicarbonate Levels in Irrigation Water

- Dissolved CO₂ in water exists in two forms:
 - CO₂ + H2O H2CO3 (carbonic acid)
 - $H2CO_3 + OH^ H_2O + HCO_3$ -(bicarbonate)
- Carbonic acid (H_2CO_3) dominate in water below pH 6.
- Bicarbonates dominate in water between pH 6 and 10.

Source: Boman, B.J., P.C. Wilson and E.A. Ontermass. Understanding Water Quality Parameters for Citrus Irrigation and Drainage Systems. IFAS Circular 1406

IFAS

<u>Bicarbonates in Water</u>

- Water above pH 7.5 is usually associated with high bicarbonates.
- Recommend levels of 2 mg/l or less
- Forms bicarbonate salts with Ca, Mg, Na, and K.
- High Ca concentrations will react to form Calcium carbonate or line.
- Particulates can drop out of water and plug emitters or microsprinklers.
- Soils with excess Ca forms CaCO₃ (lime).

Bicarbonates in Soil

- Makes phosphorus more available by tying up calcium, increasing the solubility of calcium phosphates.
- Higher calcium carbonate in soils increases pH making many nutrients less available.
- Bicarbonates have a physiological affect on roots reducing nutrient absorption.
- Treatments:
 - calcium or gypsum (calcium sulfate) to increase calcium availability to plants and soil,
 - elemental sulfur can be used to reduce soil pH,
 - applications of acidified water or acidic fertilizer.

Plant Uptake

- Soil pH and bicarbonates affect nutrient availability and root uptake.
- Bicarbonate induced chlorosis is caused by transport of bicarbonate into the plant leading to reduced nutrient uptake.
- Lime-induced chlorosis affects many annual crops and perennial plants growing on calcareous soils.
- The reduction of plant biomass in susceptible plants is related to a reduced root growth leading to a lower photosynthesis rate which also depends on the reduced leaf area per plant and chlorophyll concentration encountered under iron stress conditions.

Conclusions from Literature

- Many commercial root stocks do not perform well in high-carbonate soils.
- Inability to sufficiently extract micronutrients, including Fe, Zn and Mn.
- Limitation greatest for Poncirus trifoliata and its hybrids (e.g. Troyer, Carrizo and Swingle).
- Best adapted rootstocks are Sour Orange and Rough Lemon that have Tristeza and blight issues.

Impact of Bicarbonates on Citrus Rootstocks

Growth rate in soil amended with CaCO3 – Cleo > sour orange > Volk. >Rangpur > Carrizo > Swingle

Table 8. Plant growth and changes in leaf greenness (n = 6) among rootstocks in the Summer 1999 iron nutrition trial conducted in soil amended with CaCO₃.

		Fr	esh wt							
		(FW) (g)		FW rel. growth		HT rel. growth		Leaf greenness		
Selection	Init	ial	Final		rate $(g \cdot g^{-1})$		rate (cm·cm ⁻¹)		ratio ^z	
Cleopatra mandarin	3.4	f y	87.2	de	24.4	a	6.7	a	1.1	с
Sour orange	5.8	cd	122.5	a	20.6	b	4.5	b	1.4	с
Sour orange + Carrizo citrange	6.5	bc	111.5	ab	16.5	с	3.7	bcd	1.4	с
Kinkoji	7.3	a	120.5	a	15.7	cd	4.5	b	1.0	с
Volkamer lemon	6.5	bc	105.9	abc	15.7	cd	4.4	b	1.4	с
Rangpur	5.8	cd	92.2	cde	15.0	cd	2.6	e	1.8	bc
Sunki × Benecke TF	5.1	d	78.4	e	14.5	cd	2.9	de	1.5	bc
Carrizo citrange	5.3	d	78.4	e	14.1	cd	3.0	cde	1.7	bc
Smooth Flat Seville	6.6	ab	95.5	bcd	13.8	cd	3.9	bc	1.7	bc
Cleo × Trifoliate orange	4.2	e	56.6	f	12.5	de	3.9	bc	2.0	bc
Swingle citrumelo	5.2	d	51.6	f	9.1	e	2.4	e	5.8	a
TF 50-7	5.6	d	33.8	g	5.1	f	1.1	f	2.5	b
CaCO ₃ means										
0.4					15.6	a	3.8	ab	1.4	с
1.4					16.0	a	3.9	a	1.8	b
2.2					15.0	ab	3.7	ab	1.9	b
4.2					13.5	с	3.5	b	2.1	ab
5.9					13.9	bc	3.4	b	2.3	a
P values										
Rootstock	< 0.0001		< 0.0001		< 0.0001		< 0.0001		< 0.000	
CaCO ₃	0.52	0.5244 <0.0001		< 0.002		0.0135		0.001		
Interaction	0.3816 0.5243		0.5688		0.086		0.099			

²Readings taken with a SPAD meter. Ratio of lower:upper leaves after 14 weeks. Ratios 1.0 or greater generally indicate decreasing greenness of the upper leaf relative to the lower leaf. ³Mean separation by Tukey's honestly signification of the upper leaf relative to the lower leaf. ³Mean separation by Tukey's honestly signification of the upper leaf relative to the lower leaf. ³Mean separation by Tukey's honestly signification of the upper leaf relative to the lower leaf. ⁴Mean separation by Tukey's honestly signification of the upper leaf relative to the lower leaf.

FAS

Source: Castle, W.S., J. Nunnallee, and J.A. Manthey. 2009. Screening Citrus Rootstocks and related Selections in Soil and Solution Culture for Tolerance to Lowiron Stress. HortScience 44(3):638-645.

Effect of Bicarbonate on Grape Production

Conclusion, decreased photosynthesis, grape yield and total dry matter.

	Low-carbonate soil	High-carbonate soil
Grape cluster yield (kg plant ⁻¹)	2.56 a	0.36 b
Grape clusters per plant ⁻¹	8 a	3 b
Cluster weight (g cluster ^{-1})	320 a	140 a
Rachis length (cm)	13.4 a	6.5 b
Berries per cluster ⁻¹	64 a	38 b
Berry weight (g berry ⁻¹)	5.0 a	3.7 b
Juice soluble solids (°Brix)	14.7 a	16.4 b
Juice titratable acidity (gL^{-1})	5.1 a	4.7 a
Juice pH	3.63 a	3.49 a

Table 3. Fruit (grape) yield and quality, at harvest time, in relation to the soil.

Note: Values followed by the same letter are not significantly different at 5% level by Tukey test.

Source: Bavaresco, L. and S. Poni. 2007. Effect of Calcareous soil on Photosynthesis Rate, Mineral Nutrition and Source-Sink Ratio of Table Grapes. Journal of Plant Nutrition 26:10-11.

UNIVERSITY of FLORIDA IFAS

Water Treatment

- Standard treatment is to lower the water's pH by adding an acid. Lowering the pH to 6.5 neutralizes about half the bicarbonate in the water.
 - Injection of acidified water instead of a dry material to a wide area will reduce bicarbonate accumulation in the irrigated area where irrigation may cause to accumulation.
- Most common acids to inject are sulfuric acid, phosphoric acid,

<u>Water Treatment (cont.)</u>

- N-pHuric (urea and sulfuric acid) all the acidity of sulfuric acid but much less corrosive.
- N-pHuric or sulfuric acid acidification reacts with bicarbonates to form gypsum and H₂CO₃, which rapidly converts to H₂O and CO₂.
 Phosphoric acid and N-pHuric supplies fertilizers in addition to acidification.

Water Acidification

INJECTION PUMP

Direct injection of acid into irrigation water.
 Can be used to apply nutrients.____

SULFUR BURNER

- Burns elemental sulfur to create SO_2 gas.
- Oxidized sulfur blends with irrigation water to create sulfurous acid (H_2SO_3) .
- The solution is very mild compared to concentrated sulfuric

Conclusions

- Water from deep wells in limestone aquifers contain bicarbonates.
- Forms bicarbonate salts with Ca, Mg, Na, and K.
- Higher calcium carbonate in soils increases pH making many nutrients less available.
- Bicarbonates have a physiological affect on roots reducing nutrient absorption.
- Limitation greatest for Poncirus trifoliata and its hybrids (e.g. Troyer, Carrizo and Swingle).

UNIVERSITY of **FLORIDA**

Conclusions (Cont.)

- Standard treatment is to lower the water's pH by adding an acid. Lowering the pH to 6.5 neutralizes about half the bicarbonate in the water.
- Soil treatments:
 - calcium or gypsum (calcium sulfate) to increase calcium availability to plants and soil,
 - elemental sulfur can be used to reduce soil pH,
 - applications of acidified water or acidic fertilizer.

