

DETECTION AND MANAGEMENT OF CITRUS BLACK SPOT

Dr. Megan Dewdney Assistant Professor Citrus Research and Education Center, Lake Alfred

Black spot: A Fungal Disease

- Causal agent: Guignardia citricarpa – Asexual name: Phyllosticta citricarpa
- Hosts: Citrus species and hybrids
 - Symptomatic: Sweet oranges, mandarins and tangerines, lemons
- Rind spots cause the economic damage — Internal quality unaffected
- Causes premature fruit drop reducing yield

 Especially on late harvested cultivars

Symptoms Occur on Maturing Fruit

- Restricts export of fresh fruit

 Mostly to European countries, Japan and U.S
- Unusual to see hard spot more than 2 months before maturity
- Exposure to sunlight increases lesion number
 Warm temps also increase disease
- Symptoms generally occur on the 'sunny side of trees'

Where to Look When Scouting

- Symptoms occur on maturing fruit
- Start at least 30 days prior to harvest
 - Start scouting now as symptoms have begun to show up
- Target declining trees first
 Often have more disease
- Examine the lower canopies carefully
- Pay particular attention to the side of the tree with most sun exposure
 - Heat (~ 81°F; 27°C) and ripening stimulate symptom expression

Symptoms: Hard Spot

- The most characteristic symptom
 - If hard spot is found then likely some of the other symptoms will be as well
 - If scouting for disease concentrate on this symptom
- Small round sunken lesions with brick redchocolate brown margin and tan center
 - Fungal structures often seen as slightly raised pencilpoint dots
 - Can have green halo around lesions

Hard Spot

Young Symptoms

Other Fruit Symptoms

False Melanose

Cracked Spot

Leaf Lesions

Early Virulent (Freckle) Spot

Virulent Spot

Current Locations of the Disease

- The green squares contain grove
- The blue lines are the quarantine boundary

Disease Cycle Highlights

- Major source of inoculum: decomposing infected leaves on orchard floor (ascospores)
- Additional source of inoculum: lesions on infected fruits, leaves and branches (conidia)
- Means of spread: Wind (ascospores); Water splash (ascospores and conidia)
- Survival of the fungus: leaves, leaf litter branches, fruits and peduncles

ASCOSPORE EJECTIONS

Our Set Up

- Two spore traps at 4 sites
- Burkard collects hourly data on slides
- Second spore trap collects daily spores in tubes
- Weather station
 - Rainfall
 - Temperature
 - Leaf wetness
 - Solar radiation
 - Wind speed

Ascospore Ejections Immokalee

Ascospore Ejections Immokalee

Summary

- Greater numbers of ascospores in 2011 than 2010
 - Likely weather related
 - Ascospore ejections correlated to temperature
- Rain more frequent and heavier in 2011
 - Allows for more fungal structures to form and mature?
 - Role of irrigation?
- Release more steady in 2011

 Larger jumps in cumulative ascospores in 2010
- 2012 ascospores trapped in 2nd week of January

LEAF LITTER

Leaf Litter Reduction

- 5 sets of 5 screens (0.25 m²) in 0.25 mile (400 m) row
- 5 treatments: Urea, CaCO₃, Soilset, Compost-aid and untreated control

Leaf Litter Reduction

• Sampled leaves every 2 weeks

• Examined under for fungal structures

Experiment – February to April 2011

Cummulative degree-days (base 10 C)

FURTHER MANAGEMENT

Black Spot Control

- Fruit is susceptible for 5-6 months post-petal fall
- Control products
 - Copper All formulations
 - Strobilurin fungicides (Abound, Gem, Headline)
 - Reserved for hot weather

Black Spot Application Timing

Fruit is susceptible for 5-6 months post-petal fall

Use strobilurins when concerned about copper phytotoxicity

Citrus Copper Application Scheduler (Agroclimate.org)

- Improve copper spray timing over 21-day schedule
- Reduce environmental impact of copper sprays
- Avoid unnecessary copper applications
- Reduce costs
- Warn when residue levels are unexpectedly low

Citrus Copper Application Scheduler

« Back to tools

Greater Management Efforts

- No easy fixes or solutions
- Will require an integrated approach
 - Leaf litter management
 - Fungicide applications
 - Use tools to aid application timing
 - Removal of declining trees

Will not be able to rely on one management method

Cultural Controls

- Avoid moving trash via equipment from one location to another
 - Tarping will need to continue
 - As fresh leaves decompose can produce ascospores
- Increase air flow in trees to reduce leaf wetness
 Pathogen requires 24-48 hours of wetness to infect
- When replanting, avoid cultivars with significant off-season bloom
 - Remove trees with off-season bloom
- Maintain good tree health
 - Trees that are in poor health become more severely infected

Cultural Controls cont.

 Harvest infected blocks as soon as possible -More fruit will be lost as symptoms become severe Use clean nursery trees for planting Consider mulching in addition to leaf litter management Prune out dead wood -Source of spores • Wind breaks to slow ascospore movement -Will cause greater wetting periods and potentially greater infection

Acknowledgements

Brandon McCauley and Jiahuai Hu

Sachindra Mondal and Jenna Lastinger