#### **Transgenic Solutions at CREC**

# Jude Grosser Manjul Dutt, Ahmad Omar, Vladimir Orbovic and Gary Barthe

University of Florida,
Citrus Research and Education Center,
Lake Alfred, FL USA





# Antimicrobial peptides and HLB/Canker/CVC



- No natural resistance to HLB in any commercially cultivated sweet orange, grapefruit or tangerine.
- Antimicrobial peptides have been shown to provide resistance to bacterial diseases.
  - LIMA gene to control Xylella
     fastidiosa, the causal organism for
     Pierce's disease in grapes. (Dr. Dennis Gray,
     MREC, UF/IFAS)
- Same gene can theoretically be used to combat all three diseases.







#### What are antimicrobial peptides?

- Antimicrobial peptides are usually small proteins, usually 12 and 50 amino acids long.
- They form the first line of host defense against pathogenic infections and are a key component of the innate immune system
- Antimicrobial peptides are involved in the antimicrobial defense system among all classes of life.
  - Plants
  - Insects
  - Amphibians and
  - Mammals including humans





#### Mode of action of Antimicrobial peptides

- The net charge of antimicrobial peptides is positive. Also, they are hydrophobic and they are membrane active.
- The outer surface of bacteria is negatively charged.
- These peptides are mobilized shortly after microbial infection, and act rapidly to neutralize a broad range of microbes.
- The positively charged antimicrobial peptides bind to the negatively charged bacterial membrane
- The membrane is disrupted and antimicrobial peptides inflict damage that is difficult to repair.







### Incorporation of antimicrobial peptides for disease resistance in citrus

#### **Objectives**

- Design codon optimized antimicrobial peptides genes for citrus to combat HLB and Canker.
- Target trans-protein in phloem tissue where HLB resides.
- Produce a large number of transgenic lines using *Agrobacterium* and protoplast mediated transformation.
- Challenge plants with disease causing bacteria to evaluate resistance.





### Antimicrobial gene(s) currently under evaluation

- AttacinE Lytic peptide gene from Hyalophora cecropia.
- CEAD Codon optimized cecropin A-cecropin D lytic peptide gene.
- CEMA Codon optimized cecropin A-melittin lytic peptide gene.
- CEME Codon optimized cecropin A-melittin lytic peptide gene (differs at the C terminus from CEMA).
- LIMA Lytic peptide gene obtained from Dr. Dennis Gray, MREC, UF/IFAS.
- PTA Codon optimized N terminally modified Temporin A gene.





#### Gene Construct(s) used for Transformation



The antimicrobial gene(s) were driven by

- 1. Constitutive doubly enhanced 35s promoter or
- 2. Phloem specific sucrose synthase promoter.
- A green fluorescent protein/neomycin phosphotransferase II (EGFP/NPT II) bi-functional fusion gene under control of a cassava mosaic virus promoter was used to monitor and select transformed cells.
- A pBIN19 backbone was used to clone all gene constructs.
- Plasmid DNA was incorporated into Agrobacterium EHA105.





Systemic acquired resistance (SAR)







#### Genes for SAR

- SABP2 (Salicylic Acid-Binding Protein 2 gene from tobacco)
  - Isolated from the Tobacco plant.
  - High Affinity for SA.
  - It may be required to convert Methyl Salicylate to SA as part of the signal transduction pathways that activate systemic acquired resistance.





#### Genes for SAR

- NPR1 (Nonexpresser of PR Genes1 gene from Arabidopsis)
  - Isolated from the Model plant Arabidopsis thaliana.
  - NPR1 is a key regulator in the signal transduction pathway that leads to SAR.
  - Mediates the salicylic acid induced expression of pathogenesis-related (PR) genes and systemic acquired resistance.





## Use of phloem specific promoters to restrict trans-protein in phloem tissues





GUS expression in citrus leaf phloem tissue using the Rice Sucrose Synthase promoter

- HLB resides in the phloem.
- Targeting the trans-protein in the phloem resolves issues of the presence of the protein in the fruit and juice.
- Two phloem specific promoters are currently under evaluation
  - 1) Arabidopsis Sucrose synthase promoter and
  - 2) Rice Sucrose synthase promoter.





#### Genetic transformation of citrus

- Two methods now available
  - Agrobacterium mediated transformation
  - PEG mediated Protoplast transformation





#### Agrobacterium Mediated Transformation







#### Selection of transgenic tissue



Transgenic tissue glows green!



Non-Transgenic tissue stays red



Chimeric tissue (a mix of transgenic and non transgenic)





#### Citrus Protoplast Transformation

 A plant cell that had its cell wall completely removed using enzymatic means.



- Naked Plasmid DNA is incorporated into Protoplast DNA by Electroporation or PEG mediated transformation.
- Complete plants are regenerated from transformed protoplasts using Tissue culture techniques.







#### Protoplast transformation

- Can be used to transform polyembryonic seedless cultivars that are difficult to transform using Agrobacterium.
- Can be used to transform some polyembryonic mandarin cultivars that are often more recalcitrant to Agro-infection (i.e. W. murcott)
- Can be used to engineer plants not containing an antibiotic resistance gene.







#### Transgenic plant regeneration

| Cultivar                | Gene                       | No. of plants in soil |  |
|-------------------------|----------------------------|-----------------------|--|
| Duncan                  | AttacinE                   | 27                    |  |
| Hamlin                  | AttacinE                   | 15                    |  |
| Misc Grapefruit         | LIMA                       | 45                    |  |
| Valencia, Hamlin,OLL-8  | LIMA                       | 56                    |  |
| Carrizo                 | LIMA                       | 8                     |  |
| Flame                   | LIMA-SN                    | 10                    |  |
| Misc Grapefruit         | PTA                        | 12                    |  |
| Valencia, Hamlin, OLL8  | CEMA                       | 21                    |  |
| Carrizo                 | CEMA                       | 20                    |  |
| Key Lime                | CEMA                       | 6                     |  |
| Misc Grapefruit         | CEME                       | 18                    |  |
| Hamlin                  | CEME                       | 6                     |  |
| Valencia                | CEAD                       | 14                    |  |
| Carrizo                 | CEAD                       | 12                    |  |
| Carrizo                 | LIMA under AtSuc2 promoter | 25                    |  |
| Valencia, Hamlin, OLL-8 | LIMA under AtSuc2 promoter | 23                    |  |
| Key Lime                | LIMA under AtSuc2 promoter | 17                    |  |
| Misc Grapefruit         | LIMA under AtSuc2 promoter | 12                    |  |

#### Results with SAR genes

| Cultivar          | Gene construct          | No of Transgenic |  |
|-------------------|-------------------------|------------------|--|
|                   |                         | plants in soil   |  |
| Valencia, Hamlin, | 35s - SABP2             | 30               |  |
| Flame             |                         |                  |  |
| Valencia, Hamlin  | 35s - NPR1              | 20               |  |
| Hamlin            | AtSUC2 – SABP2          | 26               |  |
| Hamlin            | AtSUC2 – NPR1           | 10               |  |
| Hamlin            | 35s – NPR1 + 35s - LIMA | 2                |  |





#### Rapid propagation of transgenics











#### Young budded transgenic plants for field testing







#### Transgenic trees ready for testing







### Canker (Xcc) assay on transgenic Duncan leaves containing the lytic peptide gene(s)







- A Mild tissue hypertrophy in transgenic LIMA leaf
- B Moderate tissue hypertrophy in transgenic Attacin leaf
- C Severe water-soaking and tissue hypertrophy in non-transgenic control leaf





# qRT-PCR analysis of selected transgenic lines infiltrated with Xcc by the detached leaf assay method

| Transgenic | AttacinE |                              | LIMA    |                             |
|------------|----------|------------------------------|---------|-----------------------------|
| line       | Mean cT  | Bacterial cells / mg tissue* | Mean cT | Bacterial cells / mg tissue |
| MP1        | 14.775   | 194975                       | 18.285  | 18623                       |
| MP2        | 16.565   | 61453                        | 18.362  | 17619                       |
| MP3        | 14.180   | 318000                       | 26.625  | 70                          |
| MP4        | 15.935   | 90065                        | 23.365  | 629                         |
| MP5        | 18.670   | 14369                        | 14.040  | 324000                      |
| Control    | 15.560   | 115031                       | 15.560  | 115031                      |





## Transgenic plant challenge with HLB

- Carried out in an approved secure facility.
- Transgenic plants graft challenged with HLB infected sweet orange budwood.
- Several Transgenic lines are currently under evaluation.
- Transgenic plants evaluated for HLB symptoms and infection verified by qRT-PCR.





#### Graft and bud inoculation with HLB







### Transgenic plant challenge via grafting with HLB infected budwood



HLB infected budstick

Transgenic citrus plant after 13 months of inoculation with HLB + sweet orange bud stick

| Explant          | qRT-PCR using HLB specific primers |
|------------------|------------------------------------|
| Transgenic plant | Negative                           |
| Budstick         | Positive                           |





#### **HLB** inoculation results

- Wide range of symptoms observed after inoculation with HLB + budwood
- General mottle on top of leaf
- Mottle and subsequent yellowing







#### **THANKS!**

- FCPRAC block grant entitled "SURVIVING HLB AND CANKER: GENETIC STRATEGIES FOR IMPROVED SCION AND ROOTSTOCK VARIETIES" - Fred Gmitter, Jude Grosser, Bill Castle and Gloria Moore
- USDA-CSREES
- UF/CREC Core Citrus Transformation Facility
- CREC Faculty and Staff





#### Psyllid control

- Production of Transgenic citrus plants to combat psyllids
- Duncan Grapefruit used as a model.
- Constitutive expression of a Snowdrop Lectin gene from the Snowdrop Plant (Galanthus nivalis)
- Several plants are currently being propagated for resistance studies.





# Future approaches for genetic resistance studies

- Screen a large number of transgenic trees to select individuals with the highest level of resistance.
- Challenge putative resistant plants with psyllids.
- Field testing in a high disease pressure environment.







Cellulase Macerozyme



Citrus Transformation

Protoplast ring



