MODIFICATION OF CITRUS IRRIGATION WATER

Kelly T. Morgan
University of Florida, SWFREC
Immokalee
• Water from deep aquifers often contains elevated levels of bicarbonates.
• Bicarbonates can accumulate in irrigated area.
• High levels of bicarbonates pull calcium out of solution, reducing the presence of calcium on soil exchange sites.
• Bicarbonate levels in irrigation water are:
 – 0-100 ppm (low)
 – 100-180 ppm (moderate)
 – 180-600 ppm (severe)
Alkalinity

- Primarily determined by presence of bicarbonates (HCO$_3^-$), Carbonates (CO$_3^{2-}$), and hydroxides (OH$^-$) in water.
- A measure of the capacity of water to neutralize acids.
- Alkaline compounds in water remove H$^+$ ions and lower the acidity of water (increase pH).
- Limits nutrient availability in soils
Bicarbonate Levels in Irrigation Water

- Dissolved CO₂ in water exists in two forms:
 - CO₂ + H₂O → H₂CO₃ (carbonic acid)
 - H₂CO₃ + OH⁻ → H₂O + HCO₃⁻ (bicarbonate)
- Carbonic acid (H₂CO₃) dominate in water below pH 6.
- Bicarbonates dominate in water between pH 6 and 10.

Bicarbonates in Water

• Water above pH 7.5 is usually associated with high bicarbonates.
• Recommend levels of 2 mg/l or less
• Forms bicarbonate salts with Ca, Mg, Na, and K.
• High Ca concentrations will react to form Calcium carbonate or line.
• Particulates can drop out of water and plug emitters or microsprinklers.
• Soils with excess Ca forms CaCO₃ (lime).
Bicarbonates in Soil

- Makes phosphorus more available by tying up calcium, increasing the solubility of calcium phosphates.
- Higher calcium carbonate in soils increases pH making many nutrients less available.
- Bicarbonates have a physiological affect on roots reducing nutrient absorption.
- Treatments:
 - calcium or gypsum (calcium sulfate) to increase calcium availability to plants and soil,
 - elemental sulfur can be used to reduce soil pH,
 - applications of acidified water or acidic fertilizer.
• Soil pH and bicarbonates affect nutrient availability and root uptake.

• Bicarbonate induced chlorosis is caused by transport of bicarbonate into the plant leading to reduced nutrient uptake.

• Lime-induced chlorosis affects many annual crops and perennial plants growing on calcareous soils.

• The reduction of plant biomass in susceptible plants is related to a reduced root growth leading to a lower photosynthesis rate which also depends on the reduced leaf area per plant and chlorophyll concentration encountered under iron stress conditions.
Conclusions from Literature

- Many commercial root stocks do not perform well in high-carbonate soils.
- Inability to sufficiently extract micronutrients, including Fe, Zn and Mn.
- Limitation greatest for Poncirus trifoliata and its hybrids (e.g. Troyer, Carrizo and Swingle).
- Best adapted rootstocks are Sour Orange and Rough Lemon that have Tristeza and blight issues.
Impact of Bicarbonates on Citrus Rootstocks

- Growth rate in soil amended with CaCO3
 - Cleo > sour orange > Volk. > Rangpur > Carrizo > Swingle

Table 8. Plant growth and changes in leaf greenness (n = 6) among rootstocks in the Summer 1999 iron nutrition trial conducted in soil amended with CaCO3.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Fresh wt (FW) (g)</th>
<th>FW rel. growth rate (g·g⁻¹)</th>
<th>HT rel. growth rate (cm·cm⁻¹)</th>
<th>Leaf greenness ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Final</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleopatra mandarin</td>
<td>3.4 f</td>
<td>87.2 de</td>
<td>24.4 a</td>
<td>6.7 a</td>
</tr>
<tr>
<td>Sour orange</td>
<td>5.8 cd</td>
<td>122.5 a</td>
<td>20.6 b</td>
<td>4.5 b</td>
</tr>
<tr>
<td>Sour orange + Carrizo citrange</td>
<td>6.5 bc</td>
<td>111.5 ab</td>
<td>16.5 c</td>
<td>3.7 bcd</td>
</tr>
<tr>
<td>Kinkoji</td>
<td>7.3 a</td>
<td>120.5 a</td>
<td>15.7 cd</td>
<td>4.5 b</td>
</tr>
<tr>
<td>Volkmann lemon</td>
<td>6.5 bc</td>
<td>105.9 abc</td>
<td>15.7 cd</td>
<td>4.4 b</td>
</tr>
<tr>
<td>Rangpur</td>
<td>5.8 cd</td>
<td>92.2 cde</td>
<td>15.0 cd</td>
<td>2.6 e</td>
</tr>
<tr>
<td>Sunki × Benecke TF</td>
<td>5.1 d</td>
<td>78.4 e</td>
<td>14.5 cd</td>
<td>2.9 de</td>
</tr>
<tr>
<td>Carrizo citrange</td>
<td>5.3 d</td>
<td>78.4 e</td>
<td>14.1 cd</td>
<td>3.0 cde</td>
</tr>
<tr>
<td>Smooth Flat Seville</td>
<td>6.6 ab</td>
<td>95.5 bcd</td>
<td>13.8 ed</td>
<td>3.9 bc</td>
</tr>
<tr>
<td>Cleo × Trifoliate orange</td>
<td>4.2 e</td>
<td>56.6 f</td>
<td>12.5 ed</td>
<td>3.9 bc</td>
</tr>
<tr>
<td>Swingle citremelo</td>
<td>5.2 d</td>
<td>51.6 f</td>
<td>9.1 e</td>
<td>2.4 e</td>
</tr>
<tr>
<td>TF 50-7</td>
<td>5.6 d</td>
<td>33.8 g</td>
<td>5.1 f</td>
<td>1.1 f</td>
</tr>
<tr>
<td>CaCO₃ means</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>15.6 a</td>
<td>3.8 ab</td>
<td>1.4 c</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>16.0 a</td>
<td>3.9 a</td>
<td>1.8 b</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>15.0 ab</td>
<td>3.7 ab</td>
<td>1.9 b</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>13.5 c</td>
<td>3.5 b</td>
<td>2.1 ab</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>13.9 bc</td>
<td>3.4 b</td>
<td>2.3 a</td>
<td></td>
</tr>
</tbody>
</table>

Effect of Bicarbonate on Grape Production

- Conclusion, decreased photosynthesis, grape yield and total dry matter.

<p>| Table 3. Fruit (grape) yield and quality, at harvest time, in relation to the soil. |
|---------------------------------|---------------------------------|---------------------------------|</p>
<table>
<thead>
<tr>
<th>Low-carbonate soil</th>
<th>High-carbonate soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grape cluster yield (kg plant⁻¹)</td>
<td>2.56 a</td>
</tr>
<tr>
<td>Grape clusters per plant⁻¹</td>
<td>8 a</td>
</tr>
<tr>
<td>Cluster weight (g cluster⁻¹)</td>
<td>320 a</td>
</tr>
<tr>
<td>Rachis length (cm)</td>
<td>13.4 a</td>
</tr>
<tr>
<td>Berries per cluster⁻¹</td>
<td>64 a</td>
</tr>
<tr>
<td>Berry weight (g berry⁻¹)</td>
<td>5.0 a</td>
</tr>
<tr>
<td>Juice soluble solids (°Brix)</td>
<td>14.7 a</td>
</tr>
<tr>
<td>Juice titratable acidity (g L⁻¹)</td>
<td>5.1 a</td>
</tr>
<tr>
<td>Juice pH</td>
<td>3.63 a</td>
</tr>
</tbody>
</table>

Note: Values followed by the same letter are not significantly different at 5% level by Tukey test.

Water Treatment

- Standard treatment is to lower the water’s pH by adding an acid. Lowering the pH to 6.5 neutralizes about half the bicarbonate in the water.
- Injection of acidified water instead of a dry material to a wide area will reduce bicarbonate accumulation in the irrigated area where irrigation may cause accumulation.
- Most common acids to inject are sulfuric acid, phosphoric acid,
N-pHuric (urea and sulfuric acid) all the acidity of sulfuric acid but much less corrosive.

N-pHuric or sulfuric acid acidification reacts with bicarbonates to form gypsum and H_2CO_3, which rapidly converts to H_2O and CO_2.

Phosphoric acid and N-pHuric supplies fertilizers in addition to acidification.
INJECTION PUMP

- Direct injection of acid into irrigation water.
- Can be used to apply nutrients.

SULFUR BURNER

- Burns elemental sulfur to create SO_2 gas.
- Oxidized sulfur blends with irrigation water to create sulfurous acid (H_2SO_3).
- The solution is very mild compared to concentrated sulfuric acid.
• Water from deep wells in limestone aquifers contain bicarbonates.
• Forms bicarbonate salts with Ca, Mg, Na, and K.
• Higher calcium carbonate in soils increases pH making many nutrients less available.
• Bicarbonates have a physiological affect on roots reducing nutrient absorption.
• Limitation greatest for Poncirus trifoliata and its hybrids (e.g. Troyer, Carrizo and Swingle).
Standard treatment is to lower the water’s pH by adding an acid. Lowering the pH to 6.5 neutralizes about half the bicarbonate in the water.

Soil treatments:
- calcium or gypsum (calcium sulfate) to increase calcium availability to plants and soil,
- elemental sulfur can be used to reduce soil pH,
- applications of acidified water or acidic fertilizer.