Tree row volume based sprays for control of citrus diseases and pests

Franklin Behlau, PhD
Fundecitrus
Araraquara, São Paulo, Brazil

Update on optimizing citrus canker management

Outline
✓ Spray volume in São Paulo state
✓ Research results using TRV-based sprays
✓ SPIF
Spray volume in SP

1970s and 1980s

- Gun sprayers
 - 20 – 40 L/tree (5,000 to 10,000 L/ha) 535 to 1,070 gal/acre
 - 60 L/tree (15,000 L/ha) 1,600 gal/acre
 - trees/2,000L (20,000 L/ha) 2,140 gal/acre

(Ramos, H.H., personal communication)

Spray volume in SP

1990s

- 40L/tree (10,000 L/ha) 1,070 gal/acre
Spray volume in SP

2000s

References of spray quality
Spray volume in SP

2000s

8 to 10 thousand L/ha
~850 to 1,070 gal/acre

2 to 3 thousand L/ha
~200 to 320 gal/acre

Spray volume in SP

✓ Measuring the spray volume
 ✓ L/ha gal/acre
 ✓ L/tree gal/tree
 ✓ trees/spray tank
Spray volume in SP

- Measuring chemical rates
 - active ingredient/tank
 - a.i./100 L water
 - a.i./ha

- Sources of variation
 - Tree spacing
 - Tree age
 - Tree height
 - Nozzles
 - Work speed
 - Etc.

Tree row volume based sprays

Tree volume/ha

\[TRV (m^3/ha) = 10,000/\text{row spacing} \times \text{tree depth} \times \text{tree height} \]

Spray volume and a.i. rate/m³
Tree row volume based sprays

- **Apple** (Manktelow and Praat, 1997; Sutton and Unrath, 1984, 1988)
- **Stone fruit** (Rüegg et al., 1999)
- **Grape** (Gil and Escola, 2009; Pergher and Petris, 2008; Siegfrieda et al., 2007)
- **Protected tomato plantings** (Sanchez-Hermosilla et al., 2013)

Concept: based on the runoff point

- **Spray volume ABOVE runoff**
 - ~ 100 mL/m3 3.40 fl oz – exterior of the tree canopy
 - ~ 40 mL/m3 1.40 fl oz – interior of the tree canopy

(Ramos, H.H., unpublished data)
Tree row volume based sprays

Spray volume

- **Tree spacing**:
 - 7 x 3 m
 - 23 x 10 ft

- 476 trees/ha
- 193 trees/acre

<table>
<thead>
<tr>
<th>2.5m (8.2 ft)</th>
<th>4.5m (14.8 ft)</th>
</tr>
</thead>
</table>

| Non TRV-based volume: | 1.5 L/tree 0.4 gal/tree |
| TRV-based volume: | 1.5 L/tree 0.4 gal/tree |

- **Non TRV-based volume**:
 - 9,520 m³/ha (20 m³/tree)
 - 3,850 m³/acre
 - 75 mL/m³ 2.50 fl oz/m³
 - 1.5 L/tree 0.4 gal/tree
 - 715 L/ha 77 gal/acre

- **TRV-based volume**:
 - 28,560 m³/ha (60 m³/tree)
 - 11,540 m³/acre
 - 75 mL/m³ 2.50 fl oz/m³
 - 4.5 L/tree 1.2 gal/tree
 - 2,140 L/ha 230 gal/acre

Pesticide rate

- **Young grove**
 - Non TRV-based rates
 - Fungicide (a.i.)

- **Mature grove**
 - TRV-based rates
Research results
Scapin et al., 2015. Crop Protection.

Citrus canker
- 6-year-old ‘Valencia’ sweet orange
- air blast sprayer
- 23,300 m³/ha (49 m³/tree) 9,430 m³/ac

- Optimal volume: 40 to 70 mL/m³
- 1.4 to 2.40 fl oz/m³
- 20 mL/m³ 0.7 fl oz/m³ reduced copper sprays effectiveness (unpublished data)

<table>
<thead>
<tr>
<th>Coverage (%)</th>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray volume (mL/m³)</td>
<td>Internal Coverage (%)</td>
<td>External Coverage (%)</td>
</tr>
<tr>
<td>150</td>
<td>70.6 As</td>
<td>92.6 As</td>
</tr>
<tr>
<td>100</td>
<td>67.7 Bab</td>
<td>96.7 As</td>
</tr>
<tr>
<td>70</td>
<td>53.8 Bab</td>
<td>96.0 As</td>
</tr>
<tr>
<td>40</td>
<td>27.3 Bab</td>
<td>96.0 As</td>
</tr>
</tbody>
</table>

Research results
Silva Junior et al., 2016. Crop Protection.

Citrus Black Spot
- 11-year-old ‘Valencia’ sweet orange grove
- air blast sprayer
- 24,180 m³/ha (44 m³/tree) 9,790 m³/ac

- Optimal volume 75 mL/m³ (2.5 fl oz/m³)
- 50 mL/m³ (1.7 fl oz/m³) (?)

<table>
<thead>
<tr>
<th>Internal Coverage (%)</th>
<th>Spray volume (mL/m³)</th>
<th>Fungicide rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 a</td>
<td>44 a</td>
<td>34 ab</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>24 b</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>34 ab</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>24 b</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>34 ab</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>24 b</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>34 ab</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>24 b</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>34 ab</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>24 b</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>34 ab</td>
</tr>
<tr>
<td>45 b</td>
<td>44 a</td>
<td>24 b</td>
</tr>
</tbody>
</table>

Average of 3 seasons

* 75C and 50C = a.i. corrected to 100 mL/m³
Research results

G. Silva Junior et al., unpublished data.

Postbloom fruit drop

- 21-year-old ‘Pera’ sweet orange grove
- Air blast sprayer
- 446 tree/ha
- 22,746 m³/ha (51 m³/tree) **9,190 m³/ac**

Treatments

- 50 mL/m³ = 1,130 L/ha = **125 gal/ac**
- 40 mL/m³ = 900 L/ha = **100 gal/ac**
- 30 mL/m³ = 680 L/ha = **75 gal/ac**
- 20 mL/m³ = 450 L/ha = **50 gal/ac**

\[
\text{Symptomatic flower (\%)}
\]

<table>
<thead>
<tr>
<th>Spray volume (mL/m³)</th>
<th>b</th>
<th>b</th>
<th>b</th>
<th>20</th>
<th>a</th>
</tr>
</thead>
</table>

Optimal volume:
20 to 40 mL/m³

(0.7 to 1.4 fl oz/m³)

Research results

Psyllid

- 4-year-old ‘Pera’ sweet orange grove
- Air blast sprayer
- 10,087 m³/ha (25 m³/tree) **4,085 m³/ac**
- Insecticide: dimetoate

\[
\text{Psyllids were confined after spraying}
\]

Treatments

- 80 mL/m³ = 1,034 L/ha = **110 gal/ac**
- 40 mL/m³ = 517 L/ha = **55 gal/ac**
- 30 mL/m³ = 387 L/ha = **41 gal/ac**
- 25 mL/m³ = 323 L/ha = **34 gal/ac**

*30C and 25C = a.i. corrected to 40 mL/m³

\[
\text{External coverage (%)}
\]

<table>
<thead>
<tr>
<th>Spray volume (mL/m³)</th>
<th>80</th>
<th>60</th>
<th>40</th>
<th>25</th>
</tr>
</thead>
</table>

Optimal volume:
25 to 40 mL/m³ (0.85 to 1.40 oz/m³)

*30C and 25C = a.i. corrected to 40 mL/m³
Research results

M. S. Scapin et al., unpublished data.

Leprosis
- 13-year-old ‘Pera’ sweet orange grove
- air blast sprayer
- 476 tree/ha
- 25,143 m³/ha (62 m³/tree) **10,150 m³/ac**

Treatments
- 100 mL/m³ = 2,514 L/ha = **270 gal/ac**
- 200 mL/m³ = 5,029 L/ha = **540 gal/ac**
- 242 mL/m³ = 7,184 L/ha = **770 gal/ac**

100C = a.i. corrected to 100 mL/m³

Optimal volume: no more than 100 mL/m³ (3.4 fl oz/m³)

Tree row volume based sprays

Summary

- **Spray volumes (mL/m³ fl oz/m³)**
 - Psyllid: 20 (0.7)
 - Black spot: 40 (1.4)
 - Citrus canker: 70 (2.4)
 - Leprosis: 100 (3.4)

- **Max. speed (km/h mph)**
 - Psyllid: 7.0 (4.3)
 - PFD: 7.0 (4.3)
 - Citrus canker: 5.5 (3.4)
 - Black spot: 4.5 (2.8)
 - Leprosis: 3.0 (1.9)

- **Drop size:** 100 to 200 µm
- **Pressure:** 100 to 200 psi
Tree row volume based sprays

Advantages

- Water
- Chemicals
- Environmental impact
- Costs
- Operational efficiency

SPIF

SISTEMA DE PULVERIZAÇÃO INTEGRADO DO FUNDECITRUS

FUNDECITRUS INTEGRATED SPRAY SYSTEM
- Register area
- Set up spray volume
- Select chemical
- Select rates
- Reports

- Tree canopy volume
- Report history
- Volumes and rates
- Select nozzles
- Pressure
Spray settings summary

SPIF

Sprayer Settings
Number of nozzles

SPIF

Calibrar pulverizador

Volume de calda utilizado (L/h)
150.00

Diâmetro orifícios (mm)
1,00

Tipo de pulverizador
Bilateral

Número total de bicos abertos
60

Veio a frente / ponta a 100 por (cm³/min)
1,1

Dose do produto: 2,438 kg ou l/2000L.

Volume de calda
1500
L/h
66
m³/h

Dose do produto comercial
2,438
kg ou l/2000L
1,03
kg ou l/h
860,00
mg ou g/l

Dose do ingrediente ativo
1.01
kg/ha
60,05
g/100L
460,00
mg/m²
Sprayer Settings
Type of nozzles

Sprayer Settings summary
Who can access?

✓ Anyone

Where to access?

✓ Web, desktop and App versions
✓ Download: spif.fundecitrus.com.br
✓ Registration: spif@fundecitrus.com.br
Update on optimizing citrus canker management

Outline

- Copper sprays
 - Volume
 - Rate
 - Formulation
 - Spray period
- Integrated management
 - Copper
 - Windbreaks
 - Leafminer control

Citrus canker in São Paulo state

- Detected in 1957
- Control: exclusion and eradication
- Several methodologies in near 60 years
- No eradication, but suppression of the disease (<0.20% blocks up to 2009)
- HLB and legal challenges by the growers diverted attention and efforts
- Rules became less stringent in the last years
- 2017: management in SP
Citrus canker incidence in São Paulo

Blocks with canker (%)

- **Observed**
- **Estimated**

Incidence of blocks with citrus canker (%)

- **9.1%**

Irreversible scenario

Grower’s reactions
Copper spray volume

- By using 40 mL/m³ we reduced spray volume from 350 to 87 gal/ac without affecting canker control (75%)

- Optimal volume: 40 to 70 mL/m³ **1.4 to 2.40 oz/m³**

- 20 mL/m³ **0.7 oz/m³** reduces effectiveness of copper sprays (unpublished data)
Copper formulation and rate

<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulation type</th>
<th>Copper source and concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper Crop</td>
<td>solution</td>
<td>copper nitrate (35.4)</td>
</tr>
<tr>
<td>Magna-Bon CS 2005</td>
<td>solution</td>
<td>copper sulfate pentahydrate (19.8)</td>
</tr>
<tr>
<td>Diffra</td>
<td>suspension conc</td>
<td>copper oxochloride (58.8)</td>
</tr>
<tr>
<td>Supra</td>
<td>suspension conc</td>
<td>copper hydroxide (53.8)</td>
</tr>
<tr>
<td>Kocide WDG</td>
<td>water disp gran</td>
<td>copper hydroxide (53.8)</td>
</tr>
<tr>
<td>Cuprogarb 350</td>
<td>wettable powder</td>
<td>copper oxochloride (58.8)</td>
</tr>
<tr>
<td>Redshield 750</td>
<td>wettable powder</td>
<td>cuprous oxide (86.0)</td>
</tr>
</tbody>
</table>

- Spray interval: 21 days
- Formulation: fixed copper provides better control
- Formulation: there was no difference among the fixed formulations at the same met Cu rate
- Rate: 40 to 50 mg met Cu/m3 up to 1 kg met Cu/ha

Soluble copper

Fixed copper

- Year 1
- Year 2

Formulation and rate (kg met Cu/ha) *lb/ac*
Period of protection

Lesions associated with fruit drop

- Large (≥ 5 mm) vs. Small (< 5 mm)

Harvested fruit

- Large lesions on harvested fruits: 45.5%
- Small lesions on both dropped and harvested fruit: 54.5%

Dropped fruit

- Large lesions on dropped fruits: 91.3%
- Small lesions on both dropped and harvested fruit: 18.7%

‘Valencia’ orange

Based on Graham et al., 2010, 2011

The earlier that the orange fruit develop citrus canker symptoms the greater...

- the size
- the number
- the proximity to the peduncle
- the severity of lesions

The fruit drop

Fruit is susceptible up to 45 mm diameter (~120 days after bloom)

Incidence of dropped fruit (%)

- October (45/30) vs. November (75/40) vs. December (105/45)

DAB: days after bloom
FD: fruit diameter (mm)

(a)
Integrated management

Importance of Cu, winbreaks and leafminer control

Special Acknowledgment

Dr. James Graham
(UF/CREC, Lake Alfred, FL, US)
Acknowledgments

Fundecitrus
Dr. Geraldo J. Silva Jr.
Dr. Renato B. Bassanezi
Dr. Marcelo P. Miranda
MSc. Marcelo S. Scapin
MSc. Luis H. M. Scandelai

Technical support
Rafael Saraiva Fernandes (Field)
Tamiris Garcia da Silva (Lab)

Collaborators:
Dr. James Graham (UF/CREC, Lake Alfred, FL, US)
Dr. Rui Pereira Leite Jr. (IAPAR, Londrina, PR, Brazil)
Dr. José Belasque Jr. (Univ. of São Paulo, Piracicaba, SP, Brazil)
Dr. Armando Bergamin Filho (Univ. of São Paulo, Piracicaba, SP, Brazil)
Dr. Tim Gottwald (USDA, Fort Pierce, FL, US)
Leandro Teixeira (Cocamar, Maringá, PR, Brazil)

Master Students
Growers